Skip to Main Content
Advanced Deep Learning with Keras
book

Advanced Deep Learning with Keras

by Rowel Atienza, Neeraj Verma, Valerio Maggio
October 2018
Intermediate to advanced content levelIntermediate to advanced
368 pages
9h 20m
English
Packt Publishing
Content preview from Advanced Deep Learning with Keras

Chapter 6. Disentangled Representation GANs

As we've explored, GANs can generate meaningful outputs by learning the data distribution. However, there was no control over the attributes of the outputs generated. Some variations of GANs like Conditional GAN (CGAN) and Auxiliary Classifier GAN (ACGAN), as discussed in the previous chapter are able to train a generator that is conditioned to synthesize specific outputs. For example, both CGAN and ACGAN can induce the generator to produce a specific MNIST digit. This is achieved by using both a 100-dim noise code and the corresponding one-hot label as inputs. However, other than the one-hot label, we have no other ways to control the properties of generated outputs.

Note

For a review on CGAN and ACGAN, ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Hands-On Neural Networks with Keras

Hands-On Neural Networks with Keras

Niloy Purkait
Deep Learning with Keras

Deep Learning with Keras

Antonio Gulli, Sujit Pal
Keras Deep Learning Cookbook

Keras Deep Learning Cookbook

Rajdeep Dua, Sujit Pal, Manpreet Singh Ghotra

Publisher Resources

ISBN: 9781788629416Supplemental Content