Skip to Main Content
Advanced Deep Learning with Keras
book

Advanced Deep Learning with Keras

by Rowel Atienza, Neeraj Verma, Valerio Maggio
October 2018
Intermediate to advanced content levelIntermediate to advanced
368 pages
9h 20m
English
Packt Publishing
Content preview from Advanced Deep Learning with Keras

Implementation of InfoGAN in Keras

To implement InfoGAN on MNIST dataset, there are some changes that need to be made in the base code of ACGAN. As highlighted in following listing, the generator concatenates both entangled (z noise code) and disentangled codes (one-hot label and continuous codes) to serve as input. The builder functions for the generator and discriminator are also implemented in gan.py in the lib folder.

Note

The complete code is available on GitHub:

https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras

Listing 6.1.1, infogan-mnist-6.1.1.py shows us how the InfoGAN generator concatenates both entangled and disentangled codes to serve as input:

def generator(inputs, image_size, activation='sigmoid', labels=None, codes=None): ...
Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Hands-On Neural Networks with Keras

Hands-On Neural Networks with Keras

Niloy Purkait
Deep Learning with Keras

Deep Learning with Keras

Antonio Gulli, Sujit Pal
Keras Deep Learning Cookbook

Keras Deep Learning Cookbook

Rajdeep Dua, Sujit Pal, Manpreet Singh Ghotra

Publisher Resources

ISBN: 9781788629416Supplemental Content