Skip to Content
Advanced Engineering Mathematics, 7th Edition
book

Advanced Engineering Mathematics, 7th Edition

by Dennis G. Zill
December 2020
Intermediate to advanced
1064 pages
49h 43m
English
Jones & Bartlett Learning
Content preview from Advanced Engineering Mathematics, 7th Edition

6.2 Runge–Kutta Methods

INTRODUCTION

Probably one of the more popular, as well as most accurate, numerical procedures used in obtaining approximate solutions to a first-order initial-value problem y′ = f(x, y), y(x0) = y0 is the fourth-order Runge–Kutta method devised by the German applied mathematicians Carl David Runge (1856–1927) and Martin Wilhelm Kutta (1867–1944) in the late 1890s. As the words fourth-order suggest, there are Runge–Kutta methods of different orders.

Runge–Kutta Methods

Fundamentally, all Runge–Kutta methods are generalizations of the basic Euler formula (1) of Section 6.1 in that the slope function f is replaced by a ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Advanced Engineering Mathematics, 10th Edition

Advanced Engineering Mathematics, 10th Edition

Erwin Kreyszig, Herbert Kreyszig, Edward J. Norminton
Applied Calculus 5th Edition

Applied Calculus 5th Edition

Deborah Hughes-Hallett, Patti Frazer Lock, Andrew M. Gleason, Daniel E. Flath, David Lovelock, Douglas Quinney, Eric Connally, Guadalupe I. Lonzano, Karen R. Rhea, Selin Kalaycýoðlu, William G. McCallum, Adam H. Speigler, Brigitte Lahme, Brad G. Osgood

Publisher Resources

ISBN: 9781284206258