Skip to Content
Advanced Engineering Mathematics, 7th Edition
book

Advanced Engineering Mathematics, 7th Edition

by Dennis G. Zill
December 2020
Intermediate to advanced
1064 pages
49h 43m
English
Jones & Bartlett Learning
Content preview from Advanced Engineering Mathematics, 7th Edition

7.7 Gram–Schmidt Orthogonalization Process

INTRODUCTION

In Section 7.6 we saw that a vector space V can have many different bases. Recall, the defining characteristics of any basis B = {x1, x2, … , xn} of a vector space V is that

  • the set B is linearly independent, and
  • the set B spans the space.

In this context the word span means that every vector in the space can be expressed as a linear combination of the vectors x1, x2, … , xn. For example, every vector u in Rn can be written as a linear combination of the vectors in the standard basis B = {e1, e2, … , en}, where

e1 = 〈1, 0, 0, … , 0〉, e2 = 〈0, 1, 0, … , 0〉, …, en = 〈0, 0, 0, … , 1〉.

This standard basis B = {e1, e2, … , en} is also an example of an orthonormal basis; that is, the e

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Advanced Engineering Mathematics, 10th Edition

Advanced Engineering Mathematics, 10th Edition

Erwin Kreyszig, Herbert Kreyszig, Edward J. Norminton
Applied Calculus 5th Edition

Applied Calculus 5th Edition

Deborah Hughes-Hallett, Patti Frazer Lock, Andrew M. Gleason, Daniel E. Flath, David Lovelock, Douglas Quinney, Eric Connally, Guadalupe I. Lonzano, Karen R. Rhea, Selin Kalaycýoðlu, William G. McCallum, Adam H. Speigler, Brigitte Lahme, Brad G. Osgood

Publisher Resources

ISBN: 9781284206258