Skip to Content
Advanced Engineering Mathematics, 7th Edition
book

Advanced Engineering Mathematics, 7th Edition

by Dennis G. Zill
December 2020
Intermediate to advanced
1064 pages
49h 43m
English
Jones & Bartlett Learning
Content preview from Advanced Engineering Mathematics, 7th Edition

20.6 Applications

INTRODUCTION

In Sections 20.2, 20.3, and 20.5 we demonstrated how Laplace’s partial differential equation can be solved with conformal mapping methods, and we interpreted a solution u = u(x, y) of the Dirichlet problem as either the steady-state temperature at the point (x, y) or the equilibrium displacement of a membrane at the point (x, y). Laplace’s equation is a fundamental partial differential equation that arises in a variety of contexts. In this section we will establish a general relationship between vector fields and analytic functions and use our conformal mapping techniques to solve problems involving electrostatic force fields and two-dimensional fluid flows.

Vector Fields

A vector field F(x, y) = P(x, y)i + ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Advanced Engineering Mathematics, 10th Edition

Advanced Engineering Mathematics, 10th Edition

Erwin Kreyszig, Herbert Kreyszig, Edward J. Norminton
Applied Calculus 5th Edition

Applied Calculus 5th Edition

Deborah Hughes-Hallett, Patti Frazer Lock, Andrew M. Gleason, Daniel E. Flath, David Lovelock, Douglas Quinney, Eric Connally, Guadalupe I. Lonzano, Karen R. Rhea, Selin Kalaycýoðlu, William G. McCallum, Adam H. Speigler, Brigitte Lahme, Brad G. Osgood

Publisher Resources

ISBN: 9781284206258