3

Named Entity Recognition (NER) with BiLSTMs, CRFs, and Viterbi Decoding

One of the fundamental building blocks of NLU is Named Entity Recognition (NER). The names of people, companies, products, and quantities can be tagged in a piece of text with NER, which is very useful in chatbot applications and many other use cases in information retrieval and extraction. NER will be the main focus of this chapter. Building and training a model capable of doing NER requires several techniques, such as Conditional Random Fields (CRFs) and Bi-directional LSTMs (BiLSTMs). Advanced TensorFlow techniques like custom layers, losses, and training loops are also used. We will build on the knowledge of BiLSTMs gained from the previous chapter. Specifically, ...

Get Advanced Natural Language Processing with TensorFlow 2 now with O’Reilly online learning.

O’Reilly members experience live online training, plus books, videos, and digital content from 200+ publishers.