O'Reilly logo

Advances in Communications-Based Train Control Systems by F. Richard Yu

Stay ahead with the world's most comprehensive technology and business learning platform.

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, tutorials, and more.

Start Free Trial

No credit card required

vii
List of Figures
Figure1.1 Train signaling system using wayside signals ....................................2
Figure1.2 Prole-based train control system ....................................................4
Figure1.3 CBTC system...................................................................................4
Figure1.4 Typical architecture of a modern CBTC system ...............................6
Figure3.1 Superstructure subsection ..............................................................47
Figure3.2 Typical crack propagation in the head area of rail ..........................48
Figure3.3 (a) Broken rail, (b) examples of severe loss of rail foot due
tosevere corrosion, and (c) shelling ................................................48
Figure3.4 (a) Common rigid and (b) elastic fastening ....................................50
Figure3.5 Manual rail inspections expose maintenance personnel to
dangers from passing trains, ying ballast, and projectiles .............51
Figure3.6 Coverage of train-mounted and walking stick probes (a),
geometrical limitations on the current ultrasonic inspection (b),
and example of a rail break due to small rail foot defect (c) ............ 53
Figure3.7 Transducer mounting for rail foot inspection ................................. 55
Figure4.1 Measurement equipment used in the real eld CBTC channel
measurements ................................................................................68
Figure4.2 Tunnel section and deployment of antennas in the
measurement ............................................................................69
Figure4.3 (a) Tunnel where we performed the measurements in
BeijingSubway Changping Line. (b) Shark-n antenna located
on the measurement vehicle. (c) Yagi antenna. (d)APset on
the wall ..........................................................................................70
Figure4.4 Frequencies of AICc selecting a candidate distribution ..................75
viii List of Figures
Figure4.5 Simulation results generated from the FSMC model
andexperimental results from real eld measurements ..................78
Figure4.6 MSE between the FSMC model and the experimental data
with four states and eight states......................................................78
Figure 5.1 Leaky waveguide applied in viaduct scenarios of Beijing
Subway Yizhuang Line ...................................................................83
Figure5.2 Measurement equipment used in the CBTC channel
measurements ............................................................................... 84
Figure5.3 Measurement scenario ................................................................... 84
Figure5.4 Simulation results of the equivalent method and the tting
lines of several measurements .........................................................87
Figure5.5 Relative frequencies of AICc selecting a candidate distribution
as the best t to the distribution of small-scale fading amplitudes ...89
Figure5.6 Sample empirical CDFs of the small-scale fading amplitudes
and their theoretical model ts ......................................................89
Figure5.7 Variance of μ
dB
and σ
dB
with dierent receiving points ................. 90
Figure6.1 CBTC system ................................................................................96
Figure6.2 First proposed data communication system with redundancy
and no backup link ........................................................................98
Figure6.3 Second proposed data communication system with
redundancy and backup link..........................................................99
Figure6.4 CTMC model for the data communication system with basic
conguration ...............................................................................100
Figure6.5 CTMC model for the rst proposed data communication
system with redundancy and no backup link ...............................100
Figure 6.6 CTMC model for the rst proposed data communication
system with redundancy and backup link ....................................102
Figure6.7 DSPN model for the data communication system with basic
conguration ...............................................................................104
Figure6.8 DSPN model for the data communication system with
redundancy and no backup link...................................................105
Figure6.9 DSPN model for the proposed data communication system
with redundancy and backup link ................................................105
List of Figures ix
Figure6.10 Comparison of CTMC and DSPN model solutions for
dierent redundancy congurations ..........................................111
Figure6.11 Unavailability of the three WLAN-based data
communication systems .............................................................112
Figure7.1 Impacts of wireless communications on CBTC eciency ..........120
Figure7.2 Trip error under dierent hando communication latencies ......121
Figure7.3 Proposed CBTC system with CoMP ..........................................122
Figure7.4 Train control model ....................................................................123
Figure7.5 Optimal train guidance trajectory ..............................................137
Figure7.6 Control performance H
2
norm in dierent schemes ...................141
Figure7.7 Train travel trajectory in the proposed CBTC system
withCoMP ................................................................................142
Figure7.8 Train travel trajectory in the existing CBTC system...................142
Figure7.9 Train travel time error in dierent schemes ................................143
Figure7.10 Hando policies in dierent schemes .........................................144
Figure7.11 Average service discontinuity time duration in dierent
schemes.......................................................................................145
Figure8.1 WLAN hando timing diagram ................................................152
Figure8.2 Proposed hando scheme ...........................................................156
Figure8.3 FER of dierent transmission schemes .......................................159
Figure8.4 Delay dierence between adjacent APs ......................................160
Figure8.5 Latency performance improvements of the MAHO scheme ......168
Figure8.6 Time interval between two hando procedures, v=80km/h ...169
Figure8.7 (a) FER at 6.5Mbps. (b) FER at 13Mbps. (c) FER at
26Mbps. (d) FER at 65Mbps with dierent coverage areas ......170
Figure8.8 Maximum inter-site distance to meet the HO FER ...................173
Figure9.1 Train following model ................................................................181
Figure9.2 Communication procedure between ZC and the running
trains with packet drops ............................................................. 181
Figure9.3 Model of system to control a group of trains in CBTC ..............182

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, interactive tutorials, and more.

Start Free Trial

No credit card required