CONTENTS

Preface

Contributors

1 Overview of Multiuser Detection

Michael L. Honig

1.1 Introduction

1.1.1 Applications

1.1.2 Mobile Cellular Challenges

1.1.3 Chapter Outline

1.2 Matrix Channel Model

1.3 Optimal Multiuser Detection

1.3.1 Maximum Likelihood (ML)

1.3.2 Optimal (Maximum a Posteriori) Detection

1.3.3 Sphere Decoder

1.4 Linear Detectors

1.4.1 Comparison with Optimal Detection

1.4.2 Properties of Linear Multiuser Detection

1.5 Reduced-Rank Estimation

1.5.1 Subspaces from the Matched Filter

1.5.2 Eigen-Space Methods

1.5.2.1 Principal Components (PC)

1.5.2.2 Generalized Side-lobe Canceller (GSC)

1.5.2.3 Cross-Spectral Method

1.5.2.4 Comparison

1.5.3 Krylov Subspace Methods

1.5.3.1 Multi-Stage Wiener Filter (MSWF)

1.5.3.2 Rank-Recursive (Conjugate Gradient) Algorithm

1.5.3.3 Performance

1.5.3.4 Adaptive Rank Selection

1.5.4 Performance Comparison

1.6 Decision-Feedback Detection

1.6.1 Successive Decision Feedback

1.6.2 Parallel Decision Feedback

1.6.3 Filter Adaptation

1.6.4 Error Propagation and Iterative Decision Feedback

1.6.5 Application to MIMO Channels

1.7 Interference Mitigation at the Transmitter

1.7.1 Precoding for Coordinated Data Streams

1.7.1.1 Precoding for Equalizing SNR Performance

1.7.2 Signature Optimization with Uncoordinated Data Streams

1.7.3 Network Configurations

1.8 Overview of Remaining Chapters

References

2 Iterative Techniques

Alex Grant and Lars K. Rasmussen

2.1 Introduction

2.1.1 System Model

2.1.2 Multiuser Detectors

2.1.2.1 Optimal Multiuser ...

Get Advances in Multiuser Detection now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.