Aerospace Engineering e-Mega Reference

Book description

A one-stop Desk Reference, for engineers involved in all aspects of aerospace; this is a book that will not gather dust on the shelf. It brings together the essential professional reference content from leading international contributors in the field. Material covers a broad topic range from Structural Components of Aircraft, Design and Airworthiness to Aerodynamics and Modelling

* A fully searchable Mega Reference Ebook, providing all the essential material needed by Aerospace Engineers on a day-to-day basis. * Fundamentals, key techniques, engineering best practice and rules-of-thumb together in one quick-reference.* Over 2,500 pages of reference material, including over 1,500 pages not included in the print edition

Table of contents

  1. Front Cover
  2. Note from the Publisher
  3. Aerospace Engineering e-Mega Reference
  4. Copyright Page
  5. Contents
  6. Author Biographies
  7. Section 1 Introduction
    1. Chapter 1.0 - Introduction
      1. 1.1 Physical Units Used
      2. 1.2 Performance Parameters
      3. 1.3 Performance Optimization
      4. 1.4 Certificate of Airworthiness
      5. 1.5 Upgrading of Aircraft Performance
      6. 1.6 Mission Profiles
  8. Section 2 Flight Performance
    1. Chapter 2.1 - The Aircraft and its Environment
      1. 2.1.1 General Aircraft Model
      2. 2.1.2 Reference Systems
      3. 2.1.3 Forces on the Aircraft
      4. 2.1.4 Moments of Inertia
      5. 2.1.5 Flight Dynamics Equations
      6. 2.1.6 The International Standard Atmosphere
      7. 2.1.7 Non-Standard Conditions
    2. Chapter 2.2 - Weight
      1. 2.2.1 The Aircraft’s Weight
      2. 2.2.2 Definition of Weights
      3. 2.2.3 Weight Estimation
      4. 2.2.4 Weight Management
      5. 2.2.5 Range/Payload Diagram
      6. 2.2.6 Direct Operating Costs
    3. Chapter 2.3 Aerodynamics
      1. 2.3.1 Aerodynamic Forces
      2. 2.3.2 Lift Equation
      3. 2.3.3 Vortex Lift
      4. 2.3.4 High-Lift Systems
      5. 2.3.5 Drag Equation
      6. 2.3.6 Glide Ratio
      7. 2.3.7 Glide Ratio at Transonic and Supersonic Speed
      8. 2.3.8 Practical Estimation of the Drag Coefficient
      9. 2.3.9 Compressibility Effects
      10. 2.3.10 Transonic Drag Rise
      11. 2.3.11 Lift and Transonic Buffet
      12. 2.3.12 Aero-Thermodynamic Heating
      13. 2.3.13 Aerodynamic Penetration and Radius
      14. 2.3.14 Aircraft Vortex Wakes
      15. 2.3.15 Aerodynamics and Performance
    4. Chapter 2.4 - Engines
      1. 2.4.1 Gas Turbine Engines
      2. 2.4.2 Internal Combustion Engines
      3. 2.4.3 Engine Flight Envelopes
      4. 2.4.4 Power and Thrust Definitions
      5. 2.4.5 Generalized Engine Performance
      6. 2.4.6 Fuel Flow
      7. 2.4.7 Propulsive Efficiency
      8. 2.4.8 Thrust Characteristics
      9. 2.4.9 Propeller Characteristics (1/2)
      10. 2.4.9 Propeller Characteristics (2/2)
    5. Chapter 2.5 - Rotorcraft
      1. 2.5.1 Fundamentals
      2. 2.5.2 Helicopter Configurations
      3. 2.5.3 Mission Profiles
      4. 2.5.4 Flight Envelopes
      5. 2.5.5 Definitions and Reference Systems
      6. 2.5.6 Non-Dimensional Parameters
      7. 2.5.7 Methods for Performance Calculations
    6. Chapter 2.6 V/STOL
      1. 2.6.1 Hover Characteristics
      2. 2.6.2 Jet-Induced Lift
      3. 2.6.3 Lift Augmentation
      4. 2.6.4 Calculation of Short Take-Off
      5. 2.6.5 Ski Jump
      6. 2.6.6 Convertiplanes or Tilt Rotors
      7. 2.6.7 V/STOL Flight Envelopes
    7. Chapter 2.7 - Flight Envelopes
      1. 2.7.1 General Definitions
      2. 2.7.2 Aircraft Speed Range
      3. 2.7.3 Definition of Speeds
      4. 2.7.4 Steady State Level Flight
      5. 2.7.5 Speed in Level Flight
      6. 2.7.6 Absolute Ceiling of Jet Aircraft
      7. 2.7.7 Absolute Ceiling of Propeller Aircraft
      8. 2.7.8 Optimal Speeds for Level Flight
      9. 2.7.9 General Flight Envelopes
      10. 2.7.10 Limiting Factors on Flight Envelopes
      11. 2.7.11 Dash Speed of Supersonic Aircraft
      12. 2.7.12 Absolute Ceiling of Supersonic Aircraft
      13. 2.7.13 Supersonic Acceleration
      14. Problems
    8. Chapter 2.8 - Take-off and Landing
      1. 2.8.1 Definition of Terminal Phases
      2. 2.8.2 Conventional Take-Off
      3. 2.8.3 Ground Run of Jet Aircraft
      4. 2.8.4 Solutions of the Take-Off Equation
      5. 2.8.5 Rotation and Initial Climb
      6. 2.8.6 Take-Off with One Engine Inoperative
      7. 2.8.7 Calculation of the Balanced Field Length
      8. 2.8.8 Ground Run of Propeller Aircraft
      9. 2.8.9 WAT Charts
      10. 2.8.10 Missed Take-Off
      11. 2.8.11 Final Approach and Landing
      12. 2.8.12 Landing Run
      13. 2.8.13 Effects of the Wind
      14. 2.8.14 Ground Maneuvering
  9. Section 3 Aircraft Structures
    1. Chapter 3.1 - Materials
      1. 3.1.1 Aluminium Alloys
      2. 3.1.2 Steel
      3. 3.1.3 Titanium
      4. 3.1.4 Plastics
      5. 3.1.5 Glass
      6. 3.1.6 Composite Materials
      7. 3.1.7 Properties of Materials (1/3)
      8. 3.1.7 Properties of Materials (2/3)
      9. 3.1.7 Properties of Materials (3/3)
    2. Chapter 3.2 - Structural Components
      1. 3.2.1 Loads on Structural Components
      2. 3.2.2 Function of Structural Components
      3. 3.2.3 Fabrication of Structural Components
      4. 3.2.4 Connections
      5. Reference
    3. Chapter 3.3 - Airworthiness
      1. 3.3.1 Factors of Safety-Flight Envelope
      2. 3.3.2 Load Factor Determination
    4. Chapter 3.4 - Airframe Loads
      1. 3.4.1 Aircraft Inertia Loads
      2. 3.4.2 Symmetric Manoeuvre Loads
      3. 3.4.3 Normal Accelerations Associated with Various Types of Manoeuvre
      4. 3.4.4 Gust Loads
      5. References
    5. Chapter 3.5 - Fatigue
      1. 3.5.1 Safe Life and Fail-Safe Structures
      2. 3.5.2 Designing Against Fatigue
      3. 3.5.3 Fatigue Strength of Components
      4. 3.5.4 Prediction of Aircraft Fatigue Life
      5. 3.5.5 Crack Propagation
      6. References
      7. Further Reading
    6. Chapter 3.6 Structural Idealization
      1. 3.6.1 Principle
      2. 3.6.2 Idealization of a Panel
      3. 3.6.3 Effect of Idealization on the Analysis of Open and Closed Section Beams (1/2)
      4. 3.6.3 Effect of Idealization on the Analysis of Open and Closed Section Beams (2/2)
      5. 3.6.4 Deflection of Open and Closed Section Beams (1/2)
      6. 3.6.4 Deflection of Open and Closed Section Beams (2/2)
  10. Section 4 Flight Dynamics
    1. Chapter 4.1 Introduction to Flight Dynamics
      1. 4.1.1 Overview
      2. 4.1.2 Flying and Handling Qualities
      3. 4.1.3 General Considerations
      4. 4.1.4 Aircraft Equations of Motion
      5. 4.1.5 Aerodynamics
      6. 4.1.6 Computers
      7. 4.1.7 Summary
      8. References
    2. Chapter 4.2 System of Axes and Notation
      1. 4.2.1 Earth Axes
      2. 4.2.2 Aircraft Body Fixed Axes
      3. 4.2.3 Euler Angles and Aircraft Attitude
      4. 4.2.4 Axes Transformations
      5. 4.2.5 Aircraft Reference Geometry
      6. 4.2.6 Controls Notation
      7. 4.2.7 Aerodynamic Reference Centres
      8. References
    3. Chapter 4.3 Static Equilibrium and Trim
      1. 4.3.1 Trim Equilibrium
      2. 4.3.2 The Pitching Moment Equation
      3. Longitudinal Static Stability (1/2)
      4. Longitudinal Static Stability (2/2)
      5. Lateral Static Stability
      6. Directional Static Stability
      7. Calculation of Aircraft Trim Condition
      8. References
    4. Chapter 4.4 - Longitudinal Dynamics
      1. 4.4.1 Response to Controls
      2. 4.4.2 The Dynamic Stability Modes
      3. 4.4.3 Reduced Order Models (1/2)
      4. 4.4.3 Reduced Order Models (2/2)
      5. 4.4.4 Frequency Response (1/2)
      6. 4.4.4 Frequency Response (2/2)
      7. 4.4.5 Flying and Handling Qualities
      8. 4.4.6 Mode Excitation
      9. References
    5. Chapter 4.5 Lateral-Directional Dynamics
      1. 4.5.1 Response to Controls
      2. 4.5.2 The Dynamic Stability Modes
      3. 4.5.3 Reduced Order Models
      4. 4.5.4 Frequency Response
      5. 4.5.5 Flying and Handling Qualities
      6. 4.5.6 Mode Excitation
      7. References
    6. Chapter 4.6 Two-Dimensional Wing Theory
      1. 4.6.1 Introduction
      2. 4.6.2 The Development of Aerofoil Theory
      3. 4.6.3 The General Thin Aerofoil Theory
      4. 4.6.4 The Solution of the General Equation
      5. 4.6.5 The Flapped Aerofoil
      6. 4.6.6 The Jet Flap
      7. 4.6.7 The Normal Force and Pitching Moment Derivatives Due to Pitchingdagger
      8. 4.6.8 Particular Camber Lines
      9. 4.6.9 Thickness Problem for Thin-Aerofoil Theory
      10. 4.6.10 Computational (Panel) Methods for Two-Dimensional Lifting Flows (1/2)
      11. 4.6.10 Computational (Panel) Methods for Two-Dimensional Lifting Flows (2/2)
      12. Exercises
    7. Chapter 4.7 Finite Wing Theory
      1. 4.7.1 The Vortex System
      2. 4.7.2 Laws of Vortex Motion (1/2)
      3. 4.7.2 Laws of Vortex Motion (2/2)
      4. 4.7.3 The Simplified Horseshoe Vortex
      5. 4.7.4 Vortex Sheets
      6. 4.7.5 Relationship between Spanwise Loading and Trailing Vorticity (1/3)
      7. 4.7.5 Relationship between Spanwise Loading and Trailing Vorticity (2/3)
      8. 4.7.5 Relationship between Spanwise Loading and Trailing Vorticity (3/3)
      9. 4.7.6 Determination of the Load Distribution on a Given Wing (1/2)
      10. 4.7.6 Determination of the Load Distribution on a Given Wing (2/2)
      11. 4.7.7 Swept and Delta Wings (1/2)
      12. 4.7.7 Swept and Delta Wings (2/2)
      13. 4.7.8 Computational (Panel) Methods for Wings
      14. Exercises
    8. Chapter 4.8 Compressible Flow
      1. Preamble
      2. 4.8.1 Introduction
      3. 4.8.2 Isentropic One-Dimensional Flow (1/3)
      4. 4.8.2 Isentropic One-Dimensional Flow (2/3)
      5. 4.8.2 Isentropic One-Dimensional Flow (3/3)
      6. 4.8.3 One-Dimensional Flow: Weak Waves
      7. 4.8.4 One-Dimensional Flow: Plane Normal Shock Waves (1/2)
      8. 4.8.4 One-Dimensional Flow: Plane Normal Shock Waves (2/2)
      9. 4.8.5 Mach Waves and Shock Waves in Two-Dimensional Flow
      10. 4.8.6 Mach Waves
      11. 4.8.7 Shock Waves (1/3)
      12. 4.8.7 Shock Waves (2/3)
      13. 4.8.7 Shock Waves (3/3)
      14. 4.8.8 Wings in Compressible Flow (1/3)
      15. 4.8.8 Wings in Compressible Flow (2/3)
      16. 4.8.8 Wings in Compressible Flow (3/3)
      17. 4.8.9 Supersonic Linearized Theory (Ackeret’s Rule) (1/4)
      18. 4.8.9 Supersonic Linearized Theory (Ackeret’s Rule) (2/4)
      19. 4.8.9 Supersonic Linearized Theory (Ackeret’s Rule) (3/4)
      20. 4.8.9 Supersonic Linearized Theory (Ackeret’s Rule) (4/4)
      21. Exercises
    9. Chapter 4.9 Flow Control and Wing Design
      1. Preamble
      2. 4.9.1 Introduction
      3. 4.9.2 Maximizing Lift for Single-Element Aerofoils
      4. 4.9.3 Multi-Element Aerofoils (1/2)
      5. 4.9.3 Multi-Element Aerofoils (2/2)
      6. 4.9.4 Boundary Layer Control for the Prevention of Separation (1/2)
      7. 4.9.4 Boundary Layer Control for the Prevention of Separation (2/2)
      8. 4.9.5 Reduction of Skin-Friction Drag (1/2)
      9. 4.9.5 Reduction of Skin-Friction Drag (2/2)
      10. 4.9.6 Reduction of Form Drag
      11. 4.9.7 Reduction of Induced Drag
      12. 4.9.8 Reduction of Wave Drag
  11. Section 5 Aircraft Design Projects
    1. Chapter 5.1 Long-Range Business Jet
      1. 5.1.1 Introduction
      2. 5.1.2 Project Brief
      3. 5.1.3 Project Analysis
      4. 5.1.4 Information Retrieval
      5. 5.1.5 Design Concepts
      6. 5.1.6 Initial Sizing and Layout
      7. 5.1.7 Initial Estimates (1/3)
      8. 5.1.7 Initial Estimates (2/3)
      9. 5.1.7 Initial Estimates (3/3)
      10. 5.1.8 Trade-Off Studies (1/2)
      11. 5.1.8 Trade-Off Studies (2/2)
      12. 5.1.9 Initial ‘Type Specification’
      13. 5.1.10 Study Review
      14. References
    2. Chapter 5.2 Military Trainer
      1. 5.2.1 Introduction
      2. 5.2.2 Project Brief
      3. 5.2.3 Problem Definition
      4. 5.2.4 Information Retrieval
      5. 5.2.5 Design Concepts
      6. 5.2.6 Initial Sizing
      7. 5.2.7 Initial Estimates (1/3)
      8. 5.2.7 Initial Estimates (2/3)
      9. 5.2.7 Initial Estimates (3/3)
      10. 5.2.8 Constraint Analysis
      11. 5.2.9 Revised Baseline Layout
      12. 5.2.10 Further Work
      13. 5.2.11 Study Review
      14. 5.2.12 Postscript
      15. References
    3. Chapter 5.3 High-Altitude Surveillance Vehicle
      1. 5.3.1 Introduction
      2. 5.3.2 Project Brief
      3. 5.3.3 Problem Definition
      4. 5.3.4 Initial Design Considerations
      5. 5.3.5 Information Retrieval
      6. 5.3.6 Design Concepts
      7. 5.3.7 Initial Sizing and Layout (1/2)
      8. 5.3.7 Initial Sizing and Layout (2/2)
      9. 5.3.8 Initial Estimates (1/2)
      10. 5.3.8 Initial Estimates (2/2)
      11. 5.3.9 Trade-Off Studies
      12. 5.3.10 Revised Baseline Layout
      13. 5.3.11 Aircraft Specification
      14. 5.3.12 Study Review
      15. References
    4. Chapter 5.4 General Aviation Amphibian Aircraft
      1. 5.4.1 Introduction
      2. 5.4.2 Project Brief
      3. 5.4.3 Initial Design Considerations
      4. 5.4.4 Design Concepts
      5. 5.4.5 Initial Layout and Sizing
      6. 5.4.6 Initial Estimates
      7. 5.4.7 Baseline Layout
      8. 5.4.8 Revised Baseline Layout
      9. 5.4.9 Further Work
      10. 5.4.10 Study Review
      11. References
    5. Chapter 5.5 Aircraft Models
      1. 5.5.1 Aircraft A: Subsonic Commercial Jet
      2. 5.5.2 Aircraft B: Turboprop Transport Aircraft
      3. 5.5.3 Aircraft C: Supersonic Jet Fighter
      4. 5.5.4 Aircraft D: General Utility Helicopter
      5. 5.5.5 Aircraft E: Tandem Helicopter
  12. Section 6 Avionic Systems
    1. Chapter 6.1 VHF Communications
      1. 6.1.1 VHF Range and Propagation
      2. 6.1.2 DSB Modulation
      3. 6.1.3 Channel Spacing
      4. 6.1.4 Depth of Modulation
      5. 6.1.5 Compression
      6. 6.1.6 Squelch
      7. 6.1.7 Data Modes
      8. 6.1.8 ACARS
      9. 6.1.9 VHF Radio Equipment
      10. 6.1.10 Multiple Choice Questions
    2. Chapter 6.2 HF Communications
      1. 6.2.1 HF Range and Propagation
      2. 6.2.2 SSB Modulation
      3. 6.2.3 SELCAL
      4. 6.2.4 HF Data Link
      5. 6.2.5 HF Radio Equipment
      6. 6.2.6 HF Antennas and Coupling Units
      7. 6.2.7 Multiple Choice Questions
    3. Chapter 6.3 Aircraft Navigation
      1. 6.3.1 The Earth and Navigation
      2. 6.3.2 Dead Reckoning
      3. 6.3.3 Position Fixing
      4. 6.3.4 Maps and Charts
      5. 6.3.5 Navigation Terminology
      6. 6.3.6 Navigation Systems Development (1/2)
      7. 6.3.6 Navigation Systems Development (2/2)
      8. 6.3.7 Navigation Systems Summary
      9. 6.3.8 Multiple Choice Questions
    4. Chapter 6.4 Automatic Direction Finder
      1. 6.4.1 Introducing ADF
      2. 6.4.2 ADF Principles
      3. 6.4.3 ADF Equipment
      4. 6.4.4 Operational Aspects of ADF
      5. 6.4.5 Multiple Choice Questions
    5. Chapter 6.5 VHF Omnidirectional Range
      1. 6.5.1 VOR Principles
      2. 6.5.2 Airborne VOR Equipment
      3. 6.5.3 Operational Aspects of VOR (1/2)
      4. 6.5.3 Operational Aspects of VOR (2/2)
    6. Chapter 6.6 Distance Measuring Equipment
      1. 6.6.1 Radar Principles
      2. 6.6.2 DME Overview
      3. 6.6.3 DME Operation
      4. 6.6.4 Equipment Overview
      5. 6.6.5 En Route Navigation Using Radio Navigation Aids
      6. 6.6.6 Multiple Choice Questions
    7. Chapter 6.7 Flight Management Systems
      1. 6.7.1 FMS Overview
      2. 6.7.2 Flight Management Computer System (FMCS)
      3. 6.7.3 System Initialisation
      4. 6.7.4 FMCS Operation
      5. 6.7.5 FMS Summary
    8. Chapter 6.8 Air Traffic Control System
      1. 6.8.1 ATC Overview
      2. 6.8.2 ATC Transponder Modes
      3. 6.8.3 Airborne Equipment
      4. 6.8.4 System Operation (1/2)
      5. 6.8.4 System Operation (2/2)
      6. 6.8.5 Automatic Dependent Surveillance-Broadcast (ADS-B)
      7. 6.8.6 Communications, Navigation and Surveillance/Air Traffic Management (CNS/ATM)
      8. 6.8.7 Multiple Choice Questions
    9. Chapter 6.9 Traffic Alert and Collision Avoidance System
      1. 6.9.1 Airborne Collision Avoidance Systems (ACASs)
      2. 6.9.2 TCAS Overview
      3. 6.9.3 TCAS Equipment
      4. 6.9.4 System Operation
      5. 6.9.5 Multiple Choice Questions
    10. Chapter 6.10 Data Buses
      1. 6.10.1 Introducing Bus Systems
      2. 6.10.2 ARINC 429
      3. 6.10.3 Other Bus Standards
      4. 6.10.4 Multiple Choice Questions
    11. Chapter 6.11 Software
      1. 6.11.1 Software Classification
      2. 6.11.2 Software Certification
      3. 6.11.3 Software Upgrading
      4. 6.11.4 Data Verification
      5. 6.11.5 Multiple Choice Questions
    12. Chapter 6.12 Flight-Deck Audio Systems
      1. 6.12.1 Flight Interphone System
      2. 6.12.2 Cockpit Voice Recorder
      3. 6.12.3 Multiple Choice Questions
    13. Chaptrer 6.13 Emergency Location Systems
      1. 6.13.1 Types of ELT
      2. 6.13.2 Maintenance and Testing of ELT
      3. 6.13.3 ELT Mounting Requirements
      4. 6.13.4 Typical ELT
      5. 6.13.5 Cospas-Sarsat Satellites
      6. 6.13.6 Multiple Choice Questions
    14. Chapter 6.14 Electrostatic Sensitive Devices
      1. 6.14.1 Static Electricity
      2. 6.14.2 Static-Sensitive Devices
      3. 6.14.3 ESD Warnings
      4. 6.14.4 Handling and Transporting ESD
      5. 6.14.5 Multiple Choice Questions
    15. Chapter 6.15 Electromagnetic Compatibility
      1. 6.15.1 EMI Generation
      2. 6.15.2 EMC and Avionic Equipment
      3. 6.15.3 Spectrum Analysis
      4. 6.15.4 Effects and Causes of EMI
      5. 6.15.5 Aircraft Wiring and Cabling
      6. 6.15.6 Grounding and Bonding
      7. 6.15.7 Multiple Choice Questions
  13. Section 7 Rotorcraft
    1. Chapter 7.1 Introduction to Rotorcraft
      1. 7.1.1 Applications of the Helicopter
      2. 7.1.2 A Short Technical Helicopter History
      3. 7.1.3 Types of Rotorcraft
      4. 7.1.4 Rotor Configurations
      5. 7.1.5 The Essential Elements
      6. 7.1.6 The Airframe
      7. 7.1.7 Engine and Transmission
      8. 7.1.8 The Fuel System
      9. 7.1.9 The Landing Gear
      10. 7.1.10 Oleos and Ground Resonance
      11. 7.1.11 The Rotors
      12. 7.1.12 The Control System
      13. 7.1.13 Electrical and Hydraulic System
      14. 7.1.14 Instruments and Avionics
      15. References
    2. Chater 7.2 Helicopter Dynamics
      1. 7.2.1 Creating and Controlling Lift
      2. 7.2.2 The Centre of Pressure
      3. 7.2.3 The Coefficient of Lift
      4. 7.2.4 Collective Control
      5. 7.2.5 In the Hover
      6. 7.2.6 Forces on the Blades
      7. 7.2.7 Rotor Coning
      8. 7.2.8 Torque and Thrust in Rotors
      9. 7.2.9 The Rotor as an Actuator
      10. 7.2.10 Blade Element Theory
      11. 7.2.11 Disc Loading
      12. 7.2.12 Figurenbspof Merit
      13. 7.2.13 Blade Twist and Taper
      14. 7.2.14 Swirl
      15. 7.2.15 Vertical Autorotation
      16. 7.2.16 Tip Loss and the Vortex Ring
      17. 7.2.17 Ground Effect
      18. 7.2.18 Cyclic Control
      19. 7.2.19 Basic Manoeuvres
      20. 7.2.20 In Translational Flight
      21. 7.2.21 Inflow and Coning Roll
      22. 7.2.22 Rotor H-force
      23. 7.2.23 Blade Stall and Compressibility
      24. 7.2.24 The Speed Limit
      25. 7.2.25 Harmonic blade motion
      26. 7.2.26 Sources of Vibration (1/2)
      27. 7.2.26 Sources of Vibration (2/2)
      28. 7.2.27 Vibration Control
      29. 7.2.28 Harmonic Pitch Control
      30. 7.2.29 Blade Design
    3. Chapter 7.3 Helicopter Performance
      1. 7.3.1 Introduction
      2. 7.3.2 The Atmosphere
      3. 7.3.3 International Standard Atmosphere
      4. 7.3.4 Pressure and Density Altitude
      5. 7.3.5 Power Management
      6. 7.3.6 Flying for Maximum Range
      7. 7.3.7 Climbing and Descending
      8. 7.3.8 Power Management in Multiple-Engine Machines
      9. 7.3.9 The Flight Manual
      10. 7.3.10 Stability
    4. Chapter 7.4 Other Types of Rotorcraft
      1. 7.4.1 The Gyroplane
      2. 7.4.2 The Winged Helicopter
      3. 7.4.3 The Compound Helicopter
      4. 7.4.4 The Convertiplane
      5. 7.4.5 Multi-Rotor Helicopters
      6. 7.4.6 The Side-by-Side Configuration
      7. 7.4.7 Coaxial Helicopters
      8. 7.4.8 The Synchropter
      9. 7.4.9 The Tandem Rotor (1/2)
      10. 7.4.9 The Tandem Rotor (2/2)
      11. 7.4.10 Remotely Piloted and Radio-Controlled Helicopters
      12. 7.4.11 Radio Control Principles
  14. Section 8 Space Vehicles and Rockets
    1. Chapter 8.1 Satellite Attitude Dynamics
      1. 8.1.1 Introduction
      2. 8.1.2 Torque-Free Motion
      3. 8.1.3 Stability of Torque-Free Motion
      4. 8.1.4 Dual-Spin Spacecraft
      5. 8.1.5 Nutation Damper
      6. 8.1.6 Coning Maneuver
      7. 8.1.7 Attitude Control Thrusters
      8. 8.1.8 Yo-Yo Despin Mechanism
      9. 8.1.9 Gyroscopic Attitude Control (1/2)
      10. 8.1.9 Gyroscopic Attitude Control (2/2)
      11. 8.1.10 Gravity-Gradient Stabilization (1/4)
      12. 8.1.10 Gravity-Gradient Stabilization (2/4)
      13. 8.1.10 Gravity-Gradient Stabilization (3/4)
      14. 8.1.10 Gravity-Gradient Stabilization (4/4)
    2. Chapter 8.2 Rocket Vehicle Dynamics
      1. 8.2.1 Introduction
      2. 8.2.2 Equations of Motion
      3. 8.2.3 The Thrust Equation
      4. 8.2.4 Rocket Performance
      5. 8.2.5 Restricted Staging in Field-Free Space (1/2)
      6. 8.2.5 Restricted Staging in Field-Free Space (2/2)
      7. 8.2.6 Optimal Staging (1/2)
      8. 8.2.6 Optimal Staging (2/2)
    3. Chapter 8.3 Low-Energy Transfers and Applications
      1. 8.3.1 Introduction
      2. 8.3.2 Capture Problem, Models, and Transfer Types
      3. 8.3.3 Ballistic Capture Regions and Transfers (1/2)
      4. 8.3.3 Ballistic Capture Regions and Transfers (2/2)
      5. 8.3.4 Chaos and Weak Capture
      6. 8.3.5 Origin of the Moon
      7. References
    4. Chapter 8.4 Orbital Mechanics of Propellantless Propulsion Systems
      1. 8.4.1 Introduction
      2. 8.4.2 Solar Sailing
      3. 8.4.3 Solar Sail Orbital Mechanics
      4. 8.4.4 Artificial Three-Body Equilibria for Solar Sails
      5. 8.4.5 Mission Applications
      6. 8.4.6 Tethers in Space (1/2)
      7. 8.4.6 Tethers in Space (2/2)
      8. 8.4.7 Tethers in Orbit (1/2)
      9. 8.4.7 Tethers in Orbit (2/2)
      10. 8.4.8 Conclusions
      11. References
  15. Section 9 - Airworthiness
    1. Chapter 9.1 The ICAO and the Civil Aviation Authorities
      1. 9.1.1 The ICAO (International Civil Aviation Organization)
      2. 9.1.2 The Civil Aviation Authorities
      3. 9.1.3 The Joint Aviation Authorities (JAA)
      4. 9.1.4 The European Aviation Safety Agency (EASA)
      5. 9.1.5 The Federal Aviation Administration (FAA)
      6. 9.1.6 FAA Activities
      7. 9.1.7 FAA Certification
      8. 9.1.8 ‘One World, One Goal: Aviation Safety’
      9. Notes
    2. Chapter 9.2 Airworthiness Requirements
      1. 9.2.1 Requirements, Regulations, and Standards
      2. 9.2.2 JARs and FARs
      3. 9.2.3 List of JARs and FARs4 Directly or Indirectly Related to Airworthiness Certification
      4. 9.2.4 Advisory Material
      5. 9.2.5 EASA Regulations
      6. 9.2.6 General Considerations on Airworthiness Standards (1/2)
      7. 9.2.6 General Considerations on Airworthiness Standards (2/2)
      8. 9.2.7 JAR/FAR 21
      9. 9.2.8 EASA Part 21
      10. 9.2.9 Structure of Aircraft Airworthiness Standards
      11. 9.2.10 Aircraft Airworthiness Standard Applicability
      12. 9.2.11 Airworthiness Standards for Unmanned Aircraft
    3. Chapter 9.3 - Type Certification
      1. 9.3.1 Type Certification of Aircraft, Engines, and Propellers
      2. 9.3.2 Parts and Appliances Approval
      3. 9.3.3 The Master Minimum Equipment List/Minimum Equipment List
      4. 9.3.4 Type Certification of Imported Products
      5. 9.3.5 Transfer of a TC
      6. 9.3.6 Instructions for Continued Airworthiness
      7. 9.3.7 Repairs
      8. Notes
    4. Chapter 9.4 - Certificates of Airworthiness
      1. 9.4.1 Introduction
      2. 9.4.2 General Classification
      3. 9.4.3 JAR 21 Certificates of Airworthiness
      4. 9.4.4 EASA Part 21 Certificates of Airworthiness
      5. 9.4.5 FAR 21 Airworthiness Certificates (1/2)
      6. 9.4.5 FAR 21 Airworthiness Certificates (2/2)
      7. 9.4.6 Additional Airworthiness Requirements for Operation
      8. 9.4.7 FAA Operational Standards (Additional Airworthiness Requirements) (1/3)
      9. 9.4.7 FAA Operational Standards (Additional Airworthiness Requirements) (2/3)
      10. 9.4.7 FAA Operational Standards (Additional Airworthiness Requirements) (3/3)
      11. 9.4.8 JAAIEASA Operational Standards (Additional Airworthiness Requirements) (1/2)
      12. 9.4.8 JAAIEASA Operational Standards (Additional Airworthiness Requirements) (2/2)
      13. Notes
  16. Information on Source Books
  17. End Paper1
  18. End Paper2

Product information

  • Title: Aerospace Engineering e-Mega Reference
  • Author(s): Mike Tooley, Filippo De Florio, John Watkinson, Pini Gurfil, Howard D. Curtis, Antonio Filippone, T.H.G. Megson, Michael V. Cook, P. W. Carpenter, E. L. Houghton, David Wyatt, Lloyd R. Jenkinson, Jim Marchman
  • Release date: March 2009
  • Publisher(s): Butterworth-Heinemann
  • ISBN: 9781856175760