Chapter 1Introduction

Our first chapter puts LTE into its historical context, and lays out its requirements and key technical features. We begin by reviewing the architectures of UMTS and GSM, and by introducing some of the terminology that the two systems use. We then summarize the history of mobile telecommunication systems, discuss the issues that have driven the development of LTE and show how UMTS has evolved first into LTE and then into an enhanced version known as LTE-Advanced. The chapter closes by reviewing the standardization process for LTE.

1.1 Architectural Review of UMTS and GSM

1.1.1 High-Level Architecture

LTE was designed by a collaboration of national and regional telecommunications standards bodies known as the Third Generation Partnership Project (3GPP) [1] and is known in full as 3GPP Long-Term Evolution. LTE evolved from an earlier 3GPP system known as the Universal Mobile Telecommunication System (UMTS), which in turn evolved from the Global System for Mobile Communications (GSM). To put LTE into context, we will begin by reviewing the architectures of UMTS and GSM, and by introducing some of the important terminology.

A mobile phone network is officially known as a public land mobile network (PLMN), and is run by a network operator such as Vodafone or Verizon. UMTS and GSM share a common network architecture, which is shown in Figure 1.1. There are three main components, namely the core network, the radio access network and the mobile phone.

Figure ...

Get An Introduction to LTE: LTE, LTE-Advanced, SAE, VoLTE and 4G Mobile Communications, 2nd Edition now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.