images

Historically, electronic circuits were characterized by exciting them with an oscillator’s output, and then with an oscilloscope determining how the circuit affected the magnitude and phase of its input signal. In general, this technique is only appropriate for linear circuits. However, it is also useful for non-linear circuits containing transistors when the signals are small enough that the transistors can be adequately characterized by their operating points and small linear changes about their operating points; that is, the nonlinear transistors can be accurately described using small-signal analysis. The use of this technique for characterizing electronic circuits has led to the application of frequency-domain techniques to the analysis of most any linear or weakly non-linear system, a technique that is now ubiquitous in system analysis.

4.1   FREQUENCY RESPONSE OF LINEAR SYSTEMS

Consider a linear time-invariant system with transfer function H(s) being excited by an input signal having Laplace transform Xin(s).1 The Laplace transform of the output signal Xout(s), is given by

images

In the time domain, assuming Xin(t) is the inverse Laplace transform of Xin(s), and h(t) is the inverse Laplace Transform of H(s) (often called its impulse response), we have

That is, the output signal ...

Get Analog Integrated Circuit Design, 2nd Edition now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.