Implementing Naive Bayes' classification

Naive Bayes is a simple probabilistic classifier based on the Bayes theorem. This classifier is capable of calculating the most probable output depending on the input. It is possible to add new raw data at runtime and have a better probabilistic classifier. The Naive Bayes model is typically used for classification. There will be a bunch of features X1, X2,....Xn observed for an instance. The goal is to infer to which class among the limited set of classes the particular instance belongs. This model makes the assumption that every pair of features Xi and Xj is conditionally independent given the class. This classifier is a sub-class of Bayesian networks. For more information about the classifier, please ...

Get Apache Spark for Data Science Cookbook now with O’Reilly online learning.

O’Reilly members experience live online training, plus books, videos, and digital content from 200+ publishers.