1.7. Random Vector and Matrix Generation
For various simulation or power studies, it is often necessary to generate a set of random vectors or random matrices. It is therefore of interest to generate these quantities for the probability distributions which arise naturally in the multivariate normal theory. The following sections consider the most common multivariate probability distributions.
1.7.1. Random Vector Generation from Np(μ, Σ)
To generate a random vector from Np(μ, Σ) use the following steps:
Find a matrix G such that Σ = G′G. This is obtained using the Cholesky decomposition of the symmetric matrix Σ. The functions ROOT of Half in PROC IML can perform this decomposition.
Generate p independent standard univariate normal random variables ...
Get APPLIED MULTIVARIATE STATISTICS: WITH SAS® SOFTWARE now with the O’Reilly learning platform.
O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.