Skip to Content
Audio Source Separation and Speech Enhancement
book

Audio Source Separation and Speech Enhancement

by Emmanuel Vincent, Tuomas Virtanen, Sharon Gannot
October 2018
Intermediate to advanced
504 pages
18h 50m
English
Wiley
Content preview from Audio Source Separation and Speech Enhancement

19Perspectives

Emmanuel Vincent Tuomas Virtanen and Sharon Gannot

Source separation and speech enhancement research has made dramatic progress in the last 30 years. It is now a mainstream topic in speech and audio processing, with hundreds of papers published every year. Separation and enhancement performance have greatly improved and successful commercial applications are increasingly being deployed. This chapter provides an overview of research and development perspectives in the field. We do not attempt to cover all perspectives currently under discussion in the community. Instead, we focus on five directions in which we believe major progress is still possible: getting the most out of deep learning, exploiting phase relationships across time‐frequency bins, improving the estimation accuracy of multichannel parameters, addressing scenarios involving multiple microphone arrays or other sensors, and accelerating industry transfer. These five directions are covered in Sections 19.1, 19.2, 19.3, 19.4, and 19.5, respectively.

19.1 Advancing Deep Learning

In just a few years, deep learning has emerged as a major paradigm for source separation and speech enhancement. Deep neural networks (DNNs) can model the complex characteristics of audio sources by making efficient use of large amounts (typically hours) of training data. They perform well on mixtures involving similar conditions to those in the training set and they are surprisingly robust to unseen conditions (Vincent et al., 2017 ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Techniques for Noise Robustness in Automatic Speech Recognition

Techniques for Noise Robustness in Automatic Speech Recognition

Rita Singh, Tuomas Virtanen, Bhiksha Raj
Parametric Time-Frequency Domain Spatial Audio

Parametric Time-Frequency Domain Spatial Audio

Ville Pulkki, Symeon Delikaris-Manias, Archontis Politis

Publisher Resources

ISBN: 9781119279891Purchase book