CHAPTER 8 KEY FORMULAS AND EQUATIONS

A graph represents diagonal straight line to form right angle triangle with angle, theta and 90. The adjacent is y, hypotenuse as r, and opposite as x. The coordinate is (x, y).

Fig. 1

sin θ = yrcsc θ = rycos θ = xrsec θ = rxtan θ = yxcot θ = xy(8.1)
trig θ =  ±  trig θref ("trig" is any trigonometric function)(8.2)
A unit circle centered at (0, 0) passes through (1, 0), (x, y), (0, 1), (negative 1, 0), and (0, negative 1). Central angle theta has a terminal side with length r = 1 that rises through (x, y).

Fig. 1

θ = θref(quadrant I)θ = 180 °  + θref(quadrant III)θ = 180 °  − θref(quadrant II)θ = 360 °  − θref(quadrant IV)(8.3)
sin θ = ycsc θ = 1ycos θ = xsec θ = 1xtan θ = yxcot θ = xy(8.4)

Negative angles

sin( − θ) =  − sin θcos( − θ) = cos θtan( − θ) =  − tan θcsc( − θ) =  − csc θsec( − θ) = sec θcot( − θ) =  − cot θ(8.5)

Radian-degree conversions

π rad ...

Get Basic Technical Mathematics, 11th Edition now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.