Finite mixture models

One way to build mixture models is to consider a finite weighted mixture of two or more distributions. This is known as a finite mixture model. Thus, the probability density of the observed data is a weighted sum of the probability density for subgroups of the data:

Here, is the weight of each component (or class). We can interpret as the probability of the component , thus its values are restricted to the interval [0, ...

Get Bayesian Analysis with Python - Second Edition now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.