© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2024
S. K. Adari, S. AllaBeginning Anomaly Detection Using Python-Based Deep Learninghttps://doi.org/10.1007/979-8-8688-0008-5_6

6. Autoencoders

Suman Kalyan Adari1   and Sridhar Alla2
(1)
Tampa, FL, USA
(2)
Delran, NJ, USA
 

In this chapter, you will learn about autoencoder neural networks and the different types of autoencoders. You will also learn how autoencoders can be used to detect anomalies and how you can implement anomaly detection using autoencoders.

In a nutshell, this chapter covers the following topics:
  • What are autoencoders?

  • Simple autoencoders

  • Sparse autoencoders

  • Deep autoencoders

  • Convolutional autoencoders

  • Denoising autoencoders

  • Variational autoencoders

Note ...

Get Beginning Anomaly Detection Using Python-Based Deep Learning: Implement Anomaly Detection Applications with Keras and PyTorch now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.