Book description
Discover best practices for data analysis and software development in R and start on the path to becoming a fully-fledged data scientist. This book teaches you techniques for both data manipulation and visualization and shows you the best way for developing new software packages for R.
Beginning Data Science in R details how data science is a combination of statistics, computational science, and machine learning. You'll see how to efficiently structure and mine data to extract useful patterns and build mathematical models. This requires computational methods and programming, and R is an ideal programming language for this.
This book is based on a number of lecture notes for classes the author has taught on data science and statistical programming using the R programming language. Modern data analysis requires computational skills and usually a minimum of programming.
What You Will Learn
Perform data science and analytics using statistics and the R programming language
Visualize and explore data, including working with large data sets found in big data
Build an R package
Test and check your code
Practice version control
Profile and optimize your code
Who This Book Is For
Those with some data science or analytics background, but not necessarily experience with the R programming language.
Table of contents
- Cover
- Frontmatter
- 1. Introduction to R Programming
- 2. Reproducible Analysis
- 3. Data Manipulation
- 4. Visualizing Data
- 5. Working with Large Datasets
- 6. Supervised Learning
- 7. Unsupervised Learning
- 8. More R Programming
- 9. Advanced R Programming
- 10. Object Oriented Programming
- 11. Building an R Package
- 12. Testing and Package Checking
- 13. Version Control
- 14. Profiling and Optimizing
- Backmatter
Product information
- Title: Beginning Data Science in R: Data Analysis, Visualization, and Modelling for the Data Scientist
- Author(s):
- Release date: March 2017
- Publisher(s): Apress
- ISBN: 9781484226711
You might also like
book
Beginning Data Science in R 4: Data Analysis, Visualization, and Modelling for the Data Scientist
Discover best practices for data analysis and software development in R and start on the path …
book
Marketing Data Science: Modeling Techniques in Predictive Analytics with R and Python
Now a leader of Northwestern University's prestigious analytics program presents a fully-integrated treatment of both the …
book
Advanced R Statistical Programming and Data Models: Analysis, Machine Learning, and Visualization
Carry out a variety of advanced statistical analyses including generalized additive models, mixed effects models, multiple …
book
Data Science in R
This book explains the details involved in solving real computational problems encountered in data analysis. It …