A recommendation system with MLlib
Spark's MLlib implements a collaborative filtering algorithm called Alternating Least Squares (ALS) to build recommendation systems.
ALS models the rating matrix (R) as the multiplication of a low-rank user (U) and product (V) factors, and learns these factors by minimizing the reconstruction error of the observed ratings. The unknown ratings can subsequently be computed by multiplying these factors. In this way, we can recommend products based on the predicted ratings. Refer to the following quote at https://databricks.com/blog/2014/07/23/scalable-collaborative-filtering-with-spark-mllib.html:
"ALS is an iterative algorithm. In each iteration, the algorithm alternatively fixes one factor matrix and solves for ...
Get Big Data Analytics now with the O’Reilly learning platform.
O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.