February 2015
Beginner to intermediate
498 pages
16h 57m
English
Chapter 3
Alexander Thomasian
Representing objects such as images by their feature vectors and searching for similarity according to the distances of the points representing them in high-dimensional space via k-nearest neighbors (k-NNs) to a target image is a popular paradigm. We discuss a combination of singular value decomposition (SVD), clustering, and indexing to reduce the cost of processing k-NN queries for large data sets with high-dimensional data. We first review dimensionality reduction methods with emphasis on SVD and related methods, followed by a survey of clustering and indexing methods for high-dimensional ...