References 197
Figure 8.26. Fabrication of protein-functionalized polymer brushes: (i) grafting of ATRP
initiator 1 and surface-initiated ATRP; (ii) activation of hydroxyl groups with p-nitrophenyl
chloroformate (NPC); (iii) functionalization with benzylguanine derivative 2and quenching
of residual NPC groups; (iv) immobilization of AGT fusion proteins on benzylguanine-
displaying surfaces. Images adapted from ref.
129
For color reference, see page 273.
8.8 CONCLUSIONS
We have made attempt to discuss the different approaches used in the devel-
opment of non-fouling surfaces based on polymeric surface modification. We
have also discussed the advantages and disadvantages of different methods
used for making non-fouling surfaces. Among the polymeric systems described,
poly(ethylene glycol) accounts for the majority of the non-fouling surfaces re-
ported literature. Covalent grafting of polymers especially surface initiated poly-
merization is gaining popularity due to the excellent stability of grafted layers
and non-fouling properties. There is lot of interest in the functionalization of
non-fouling surfaces especially for applications in immunoassays, biosensors and
microarrays.
ACKNOWLEDGEMENTS
J.N.K. acknowledges the financial support from University of British Columbia,
Canadian Blood Services, Canadian Institutes of Health Research and Natural
Science and Engineering Research Council of Canada (NSERC) and Canada Foun-
dation for Innovation (CFI). The is the recipient of a Canadian Institutes of Health
Research (CIHR)/Canadian Blood Services (CBS) new investigator award in trans-
fusion science KY acknowledges a postdoctoral fellowship from CBS/CIHR.
References
1
M. B. Gorbet and M. V. Sefton, Biomaterials 25, 5681 (2004).
2
B. D. Ratner and S. J. Bryant, Annu. Rev. Biomed. Eng. 6, 41 (2004).
SO13997_text.indd 205SO13997_text.indd 205 26/01/2011 3:50 PM26/01/2011 3:50 PM
198 References
3
K. J. Kitching, V. Pan and B. D. Ratner, In Plasma Polymer Films; Biederman, H., Eds.;
Imperial College Press: London, pp 325-377 (2004).
4
N. Nath, J. Hyun, H. Ma and A. Chilkoti, Surf. Sci. 570, 98 (2004).
5
K. F. Bohringer, J. Micromech. Microeng. 13, S1 (2003).
6
C. Mao, Y. Qiu, H. Sang, H. Mei, A. Zhu, J. Shen and S. Lin, Adv. Colloid Interface Sci.
110, 5 (2004).
7
K. Kottke-Merchant, J. M. Anderson, Y. Umemura and R. E. Merchant, Biomaterials 10,
147 (1989).
8
A. A. A. DeQueiroz, E. R. Barrak, H. A. C. Gil and O. Z. Higa, J. Biomater. Sci. Polym. Ed.
8, 667 (1997).
9
W. E. Hennink, L. Dost, J. Feijen and S. W. Kim, Tran s AS AIO 29, 200 (1983).
10
E. Brynda and M. Houska, J. Colloid Interface Sci. 183, 18 (1996).
11
E. Brynda, M. Housla, M. Jirouslova and J. E. Dyr, J. Biomed. Mater. Res. 51, 249 (2000).
12
G. W. Bos, N. M. Scharenborg, A. A. Poot, G. H. Engbers, T. Beugeling, W. A. Aken and
J. Feijen, J. Bi omed. Mater. Res. 47, 279 (1999).
13
K.D.Park,A.Z.Piao,H.Jacobs,T.OkanoandS.W.Kim,J. Polym. Sci. 29, 1725 (1991).
14
R.Barbucci,A.Magnani,A.AlbaneseandF.Tempesti,Int. J. Artif. Organs 14, 499 (1991).
15
Y. Ito, M. Sisido and Y. Imanishi, J. Biomed. Mater. Res. 20, 1157 (1986).
16
Y.J.Kim,I.K.Kang,M.W.HuhandS.C.Yoon,Biomaterials 21, 121 (2000).
17
P. Olsson, J. Sanchez, T. E. Mollnes and J. J. Riesenfeld, J.Biomater.Sci.Polym.Ed.11,
1261 (2000).
18
T. Matsud and T. Magoshi, Biomacromolecules 2, 1169 (2001).
19
W. Senaratne, L. Andruzzi and C. K. Ober, Biomacromolecules 6, 2427 (2005).
20
S.Sharma,R.W.JohnsonandT.A.Desai,Biosens. Bioelectron. 20, 227 (2004).
21
A. L. Klibanov, V. P. Torchilin and S. Zalipsky, In Liposomes, 2nd ed.; V. P. Torchilin, V.
Weissig, Eds.; Oxford University Press: Oxford, UK, pp 231-265 (2003).
22
I. Tsujino, J. Ako, Y. Honda and P. J. Fitzgerald, Exp. Opin. Drug Deliv. 4, 287 (2007).
23
H.M.BurtandW.L.Hunter,Adv. Drug Deliv. Rev. 58, 350 (2006).
24
D.Kim,S.Park,J.H.Lee,Y.Y.JeongandS.Jon,J. Am. Chem. Soc. 129, 7661 (2007).
25
P. Caliceti and F. Veronese, M. Adv. Drug Deliv. Rev. 55, 1261 (2003).
26
E. van Vlerken Lilian, K. V. Tushar and M. A. Mansoor, Pharm. Res. 24, 1405 (2007).
27
L. D. Unsworth, H. Sheardown and J. L. Brash, Biomaterials 26, 5927 (2005).
28
B. Zdyrko, S. K. Varshney and I. Luzinov, Langmuir 20, 6727 (2004).
29
C. E. McNamee, S.Yamamoto and K. Higashitani, Biophys. J. 93, 324 (2007).
30
R. Bartucci, M. Pantusa, D. Marsh and L. Sportelli, Biochim. Biophys. Acta-Biomembranes
1564, 237 (2002).
31
B. M. Steels, J. Koska and C. A. Haynes, J. Chromatogr., B: Biomed. Sci. Appl. 743, 41 (2000).
32
N. Singh, X. Cui, T. Boland and S. M. Husson, Biomaterials 28, 763 (2007).
33
M. A. Carignano, I. Szleifer, Colloids Surf., B 18, 169 (2000).
34
J. Satulovsky, M. A. Carignano and I. Szleifer, Proc. Natl. Acad. Sci. USA 97, 9037 (2000).
35
A. Halperin, Langmuir 15, 2525 (1999).
36
Harris, J. M. Poly(ethylene glycol) Chemistry: Biotechnical and Biomedical Applications
(Plenum Press, New York, 1992).
37
J. H. Lee, H. B. Lee and J. D. Andrade, Prog. Polym. Sci. 20, 1043 (1995).
38
Ft.Hesselin,A.VrijandJ.T.Overbeek,J. Phys. Chem. 75, 2094 (1971).
SO13997_text.indd 206SO13997_text.indd 206 26/01/2011 3:50 PM26/01/2011 3:50 PM

Get Biomaterials for MEMS now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.