3.3. An Entropy Interpretation
The previous section has shown that the EM algorithm is a powerful tool in estimating the parameters of finite-mixture models. This is achieved by iteratively maximizing the expectation of the model's completed-data likelihood function. The model's parameters, however, can also be obtained by maximizing an incomplete-data likelihood function, leading to an entropy interpretation of the EM algorithm.
3.3.1. Incomplete-Data Likelihood
The optimal estimates are obtained by maximizing
Equation 3.3.1
Define
such that ...
Get Biometric Authentication: A Machine Learning Approach now with the O’Reilly learning platform.
O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.