Skip to Content
Biometric Authentication: A Machine Learning Approach
book

Biometric Authentication: A Machine Learning Approach

by S. Y. Kung, M. W. Mak, S. H. Lin
September 2004
Intermediate to advanced
496 pages
13h 57m
English
Pearson
Content preview from Biometric Authentication: A Machine Learning Approach

6.1. Introduction

Multi-layer networks are perhaps the simplest and most popular supervised learning model and can be adopted for most biometric authentication applications. Structurally, a multi-layer network has full connectivity, as illustrated in Figure 6.1(a). More precisely, all hidden nodes of one lower layer are fully connected to all nodes in its immediate subsequent layer. In other words, the model adopts a flat network structure such that all synaptic weights of a layer are lumped together in one supernetwork. This type of network is also termed "all-class-one-network" (ACON) [186].

Figure 6.1. Different types of architectures for feed-forward neural networks: (a) ACON structure, (b) class-based, and (c) expert-based grouping structure. ...
Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Advances in Biometrics for Secure Human Authentication and Recognition

Advances in Biometrics for Secure Human Authentication and Recognition

Dakshina Ranjan Kisku, Phalguni Gupta, Jamuna Kanta Sing
Touchless Fingerprint Biometrics

Touchless Fingerprint Biometrics

Ruggero Donida Labati, Vincenzo Piuri, Fabio Scotti
Signal and Image Processing for Biometrics

Signal and Image Processing for Biometrics

Amine Naït-Ali, Régis Fournier
Public-key Cryptography: Theory and Practice

Public-key Cryptography: Theory and Practice

Abhijit Das, C. E. Veni Madhavan

Publisher Resources

ISBN: 0131478249Purchase book