wjp(n+1)=wjp(n)2μ3x~(n)[|x~(n)|2R2]f4(k=1Kwk(n)vkK(n))×(p=1Pwpk(n)vpP(n))f2(j=1Jwjp(n)vjJ(n))wk(n)wpk(n)vjJ(n)(3.76)

where μ3 is the weight iterative step size between the first hidden layer and the second hidden layer.

Weight iterative formula between the input layer and the first hidden layer

The connection weight between the input layer and the first hidden layer is wij(n), so

wij(n+1)=wij(n)2μ4x˜(n)[ |x˜(n)|2R2 ]x˜(n)wij(n)(3.77)

x~(n)wij(n)=f4(k=1Kwk(n)vkK(n))u(n)wij(n)=f4(k=1Kwk(n)vkK(n))wk(n)vkK(n)wij(n)=f4(k=1Kwk(n)vkK(n))wk(n)f3(p=1Pwpk(n)vpP(n))×wpk(n)f2(j=1Jwjp(n)vjJ(n))vjJ(n)wij(n)=f4(k=1Kwk(n)vkK(n))wk(n)f3(p=1Pwpk(n)vpP(n))wpk(n)f2(j=1Jwjp(n)vjJ(n))×wjp(n)f1(i=1I

Get Blind Equalization in Neural Networks now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.