The weights iterative formula of the feed-forward units is

cj(n+1)=cj(n)2μc[ | x˜(n) |2R2 ]Kq*(n)y*(nj)(7.101)

where μc is the iteration step size factor of the feed-forward unit:

K=f(vR(n))f'(vR(n))+jf(vI(n))f'(vI(n))(7.102)

The weight iteration formula of recurrent unit

The connection weight between recurrent and output unit is ai(n + 1) = ai, R(n)+ jdi,I(n).

|x~(n)|ai,R(n)=x~(n)x~(n)ai,R(n)=12|x~(n)|x~(n)x~(n)ai,R(n)=12|x~(n)|[f2(vR)+f2(vI(n))]ai,R(n)=1|x~(n)|[f(vR(n))f(vR(n))vR(n)ai,R(n)+f(v1(n))f(v1(n))vI(n)ai,R(n)]=1|x~(n)|[f(vR(n))f(vR(n))x~R(ni)+f(v1(n))f(v1(n))x~I(ni)]

| x˜(n) |aj,I(n)=1| x˜(n) |[ f(vR(n))f'(vR(n))x˜I(ni)+f(vI(n))f'(vI(n))x˜R

Get Blind Equalization in Neural Networks now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.