O'Reilly logo

Building a Recommendation System with R by Suresh K. Gorakala

Stay ahead with the world's most comprehensive technology and business learning platform.

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, tutorials, and more.

Start Free Trial

No credit card required

Hybrid recommender systems

In many situations, we are able to build different collaborative and content-based filtering models. What if we take account of all of them at the same time? In machine learning, the approach of combining different models usually leads to better results.

A simple example is collaborative filtering combined with information about users and/or items. In the case of IBCF, the distance between items can take account of user preferences and item descriptions at the same time. Even in UBCF, the distance between users can take account of their preferences and personal data.

In the case of recommendation, these models are called hybrids. There are different ways to combine filtering models.

Parallelized hybrid systems run the recommenders ...

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, interactive tutorials, and more.

Start Free Trial

No credit card required