Evaluating recommender techniques
This chapter will show you two popular approaches to evaluate recommendations. They are both based on the cross-validation framework described in the previous section.
The first approach is to evaluate the ratings estimated by the algorithm. The other approach is to evaluate the recommendations directly. There is a subsection for each approach.
Evaluating the ratings
In order to recommend items to new users, collaborative filtering estimates the ratings of items that are not yet purchased. Then, it recommends the top-rated items. At the moment, let's forget about the last step. We can evaluate the model by comparing the estimated ratings with the real ones.
First, let's prepare the data for validation, as shown in ...
Get Building a Recommendation System with R now with the O’Reilly learning platform.
O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.