Building the model
This section will show you how to build a recommendation model using item descriptions and user purchases. The model combines item-based collaborative filtering with some information about the items. We will include the item description using a monolithic hybrid system with feature combination. The recommender will learn from the two data sources in two separate stages.
Following the approach described in Chapter 3, Recommender Systems, let's split the data into the training and the test set:
which_train <- sample(x = c(TRUE, FALSE),size = nrow(ratings_matrix),replace = TRUE,prob = c(0.8, 0.2))recc_data_train <- ratings_matrix[which_train, ] recc_data_test <- ratings_matrix[!which_train, ]
Now, we can build an IBCF model using ...
Get Building a Recommendation System with R now with the O’Reilly learning platform.
O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.