O'Reilly logo

Stay ahead with the world's most comprehensive technology and business learning platform.

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, tutorials, and more.

Start Free Trial

No credit card required

Chemical Engineering Fluid Mechanics, Third Edition, 3rd Edition

Book Description

This book provides readers with the most current, accurate, and practical fluid mechanics related applications that the practicing BS level engineer needs today in the chemical and related industries, in addition to a fundamental understanding of these applications based upon sound fundamental basic scientific principles. The emphasis remains on problem solving, and the new edition includes many more examples.

Table of Contents

  1. Cover
  2. Half Title
  3. Title Page
  4. Copyright Page
  5. Dedication
  6. Table of Contents
  7. Preface
  8. Acknowledgments
  9. Unit Conversion Factors
  10. Chapter 1 Basic Concepts
    1. I. Fundamentals
      1. A. Introduction and Scope
      2. B. Basic Laws
      3. C. Experience
    2. II. Objective
      1. A. A Note on Problem Solving
    3. III. Phenomenological Rate or Transport Laws
      1. A. Fourier’s Law of Heat Conduction
      2. B. Fick’s Law of Diffusion
      3. C. Ohm’s Law of Electrical Conductivity
      4. D. Newton’s Law of Viscosity
        1. 1. Momentum Flux and Shear Stress
        2. 2. Vectors and Dyads
        3. 3. Newtonian and Non-Newtonian Fluids
    4. IV. The “System”
    5. V. Turbulent Macroscopic (Convective) Transport Models
    6. Summary
    7. Problems
    8. Notation
    9. References
  11. Chapter 2 Dimensional Analysis and Scale-Up
    1. I. Introduction
    2. II. Units and Dimensions
      1. A. Dimensions
      2. B. Units
      3. C. Conversion Factors
    3. III. Conservation of Dimensions
      1. A. Numerical Values
      2. B. Consistent Units
    4. IV. Dimensional Analysis
      1. A. Pipeline Analysis
      2. B. Uniqueness
      3. C. Dimensionless Variables
      4. D. Problem Solution
      5. E. Alternate Groups
    5. V. Scale-Up
    6. VI. Dimensionless Groups in Fluid Mechanics
    7. VII. Accuracy and Precision
    8. Problems
    9. Notation
  12. Chapter 3 Fluid Properties in Perspective
    1. I. Classification of Materials and Fluid Properties
    2. II. Determination of Fluid Viscous (Rheological) Properties
      1. A. Cup and Bob (Couette) Viscometer
      2. B. Tube Flow (Poiseuille) Viscometer
    3. III. Types of Non-Newtonian Fluid Behavior
      1. A. Newtonian Fluid
      2. B. Bingham Plastic Model
      3. C. Power Law Model
      4. D. Structural Viscosity Models
        1. 1. Carreau Model
        2. 2. Other Models
    4. IV. Temperature Dependence of Viscosity
      1. A. Liquids
      2. B. Gases
    5. V. Density
    6. VI. Surface Tension
    7. Summary
    8. Problems
    9. Notation
    10. References
  13. Chapter 4 Fluid Statics
    1. I. Stress and Pressure
    2. II. The Basic Equation of Fluid Statics
      1. A. Constant Density Fluids
      2. B. Ideal Gas: Isothermal
      3. C. Ideal Gas: Isentropic
      4. D. The Standard Atmosphere
    3. III. Moving Systems
      1. A. Vertical Acceleration
      2. B. Horizontally Accelerating Free Surface
      3. C. Rotating Fluid
    4. IV. Buoyancy
    5. V. Static Forces on Solid Boundaries
    6. Summary
    7. Problems
    8. Notation
  14. Chapter 5 Conservation Principles
    1. I. The System
    2. II. Conservation of Mass
      1. A. Macroscopic Mass Balance
      2. B. Microscopic Mass Balance
    3. III. Conservation of Energy
      1. A. Internal Energy
        1. 1. Ideal Gas
        2. 2. Nonideal Gas
        3. 3. Solids and Liquids
      2. B. Enthalpy
        1. 1. Ideal Gas
        2. 2. Nonideal Gas
        3. 3. Solids and Liquids
    4. IV. Irreversible Effects
      1. A. Kinetic Energy Correction
    5. V. Conservation of Linear Momentum
      1. A. One-Dimensional Flow in a Tube
      2. B. The Loss Coefficient
      3. C. Conservation of Angular Momentum
      4. D. Moving Boundary Systems and Relative Motion
      5. E. Microscopic Momentum Balance
    6. Summary
    7. Problems
    8. Notation
    9. Reference
  15. Chapter 6 Pipe Flow
    1. I. Flow Regimes
    2. II. General Relations for Pipe Flows
      1. A. Energy Balance
      2. B. Momentum Balance
      3. C. Continuity
      4. D. Energy Dissipation
    3. III. Newtonian Fluids
      1. A. Laminar Flow
      2. B. Turbulent Flow
        1. 1. Boundary Layer
        2. 2. Turbulent Momentum Flux
        3. 3. Mixing Length Theory
        4. 4. Friction Loss in Smooth Pipe
        5. 5. Friction Loss in Rough Tubes
        6. 6. Friction Loss in Rough Pipe
        7. 7. Wall Roughness
      3. C. All Flow Regimes
    4. IV. Power Law Fluids
      1. A. Laminar Flow
      2. B. Turbulent Flow
      3. C. All Flow Regimes
    5. V. Bingham Plastics
      1. A. Laminar Flow
      2. B. Turbulent Flow
      3. C. All Reynolds Numbers
    6. VI. Pipe Flow Problems
      1. A. Unknown Driving Force
        1. 1. Newtonian Fluid
        2. 2. Power Law Fluid
        3. 3. Bingham Plastic
      2. B. Unknown Flow Rate
        1. 1. Newtonian Fluid
        2. 2. Power Law Fluid
        3. 3. Bingham Plastic
      3. C. Unknown Diameter
        1. 1. Newtonian Fluid
        2. 2. Power Law Fluid
        3. 3. Bingham Plastic
      4. D. Use of Tables
    7. VII. Tube Flow (Poiseuille) Viscometer
    8. VIII. Turbulent Drag Reduction
    9. Summary
    10. Problems
    11. Notation
    12. References
  16. Chapter 7 Internal Flow Applications
    1. I. Noncircular Conduits
      1. A. Laminar Flows
        1. 1. Flow in a Slit
        2. 2. Flow in a Film
        3. 3. Annular Flow
      2. B. Turbulent Flows
    2. II. Most Economical Diameter
      1. A. Newtonian Fluids
      2. B. Non-Newtonian Fluids
        1. 1. Power Law Fluid
        2. 2. Bingham Plastic
    3. III. Friction Loss in Valves and Fittings
      1. A. Loss Coefficient
      2. B. Equivalent L/D Method
      3. C. Crane Method
      4. D. 2-K (Hooper) Method
      5. E. 3-K (Darby) Method
    4. IV. Non-Newtonian Fluids
    5. V. Pipe Flow Problems with Fittings
      1. A. Unknown Driving Force
        1. 1. Newtonian Fluid
        2. 2. Power Law Fluid
        3. 3. Bingham Plastic
      2. B. Unknown Flow Rate
        1. 1. Newtonian Fluid
        2. 2. Power Law Fluid
        3. 3. Bingham Plastic
      3. C. Unknown Diameter
        1. 1. Newtonian Fluids
        2. 2. Power Law Fluid
        3. 3. Bingham Plastic
    6. VI. Slack Flow
    7. VII. Pipe Networks
    8. Problems
    9. Notation
    10. References
  17. Chapter 8 Pumps and Compressors
    1. I. Pumps
      1. A. Positive Displacement Pumps
      2. B. Centrifugal Pumps
    2. II. Pump Characteristics
    3. III. Pumping Requirements and Pump Selection
      1. A. Required Head
      2. B. Composite Curves
    4. IV. Cavitation and NPSH
      1. A. Vapor Lock and Cavitation
      2. B. Net Positive Suction Head
      3. C. Specific Speed
      4. D. Suction Specific Speed
    5. V. Compressors
      1. A. Isothermal Compression
      2. B. Isentropic Compression
      3. C. Staged Operation
      4. D. Efficiency
    6. Summary
    7. Problems
    8. Notation
    9. References
  18. Chapter 9 Compressible Flows
    1. I. Gas Properties
      1. A. Ideal Gas
      2. B. The Speed of Sound
    2. II. Pipe Flow
      1. A. Isothermal Flow
      2. B. Adiabatic Flow
      3. C. Choked Flow
        1. 1. Isothermal
        2. 2. Adiabatic
      4. D. The Expansion Factor
      5. E. Frictionless Adiabatic Flow
      6. F. General Fluid Properties
    3. III. Generalized Gas Flow Expressions: Ideal Gas
      1. A. Governing Equations
        1. 1. Continuity
        2. 2. Energy
        3. 3. Momentum
      2. B. Applications
      3. C. Solution of High-Speed Ideal Gas Problems
        1. 1. Unknown Driving Force
        2. 2. Unknown Flow Rate
        3. 3. Unknown Diameter
    4. Summary
    5. Problems
    6. Notation
    7. References
  19. Chapter 10 Flow Measurement
    1. I. Scope
    2. II. Pitot Tube
    3. III. Venturi and Nozzle
    4. IV. Orifice Meter
      1. A. Incompressible Flow
      2. B. Compressible Flow
      3. C. Friction Loss Coefficient
      4. D. Other Geometries
    5. V. Orifice Problems
      1. A. Unknown Pressure Drop
      2. B. Unknown Flow Rate
      3. C. Unknown Diameter
    6. VI. Noninvasive Techniques
      1. A. Vortex-Shedding Flow Meter
      2. B. Magnetic Flow Meter
      3. C. Ultrasonic Flow Meter
      4. D. The Coriolis Flow Meter
    7. Summary
    8. Problems
    9. Notation
    10. References
  20. Chapter 11 Safety Relief and Control Valves
    1. I. Safety Relief Valves
      1. A. Background
      2. B. Valve Sizing
        1. 1. Flow Model
        2. 2. Fluid Property Model
        3. 3. Flow Data
      3. C. Fluid Models
        1. 1. Incompressible Fluids
        2. 2. Ideal Gases
        3. 3. The Homogeneous Direct Integration Method for Any Single- or Two-Phase Flow
        4. 4. Nonequilibrium (Flashing) Flows
      4. D. The Discharge Coefficient
    2. II. Control Valves
      1. A. Valve Characteristics
      2. B. Overview of Control Valve Sizing
      3. C. The Equation Constant
        1. 1. Incompressible Fluids
      4. D. Valve Coefficients
        1. 1. The Valve Sizing Coefficient
        2. 2. FP: The Piping Geometry Factor
        3. 3. FL2 (Km): The Liquid Pressure Recovery Factor
        4. 4. Fd: The Valve Style Modifier
      5. E. Cavitating and Flashing Liquids
        1. 1. Introduction
        2. 2. FF = rc: The Liquid Critical Pressure Ratio
        3. 3. xT: The Pressure Differential Ratio Factor for a Control Valve without Attached Fittings at Choked Flow
      6. F. Viscous Fluids
      7. G. Compressible Fluids
        1. 1. Subsonic Flow
        2. 2. Choked Flow
      8. H. General (HDI) Method for All Fluids and All Conditions
      9. I. Valve-System Interaction
      10. J. Matching Valve Trim to the System
    3. Summary
    4. Problems
    5. Notation
    6. References
  21. Chapter 12 External Flows
    1. I. The Drag Coefficient
      1. A. Stokes Flow
      2. B. Form Drag
      3. C. All Reynolds Numbers
      4. D. Cylinder Drag
      5. E. Boundary Layer Effects
    2. II. Falling Particles
      1. A. Unknown Velocity
      2. B. Unknown Diameter
      3. C. Unknown Viscosity
    3. III. Correction Factors
      1. A. Wall Effects
      2. B. Effect of Particle Shape
      3. C. Drops and Bubbles
    4. IV. Non-Newtonian Fluids
      1. A. Power Law Fluids
        1. 1. Unknown Velocity
        2. 2. Unknown Diameter
      2. B. Wall Effects
      3. C. Carreau Fluids
      4. D. Bingham Plastics
    5. Summary
    6. Problems
    7. Notation
    8. References
  22. Chapter 13 Fluid-Solid Separations by Free Settling
    1. I. Fluid-Solid Separations
    2. II. Gravity Settling
    3. III. Centrifugal Separation
      1. A. Separation of Immiscible Liquids
    4. IV. Cyclone Separations
      1. A. General Characteristics
      2. B. Aerocyclones
        1. 1. Velocity Distribution
        2. 2. Pressure Drop
        3. 3. Separation Efficiency
        4. 4. Other Effects
      3. C. Hydrocyclones
    5. Summary
    6. Problems
    7. Notation
    8. References
  23. Chapter 14 Flow in Porous Media
    1. I. Description of Porous Media
      1. A. Hydraulic Diameter
      2. B. Porous Medium Friction Factor
      3. C. Porous Medium Reynolds Number
    2. II. Friction Loss in Porous Media
      1. A. Laminar Flow
      2. B. Turbulent Flow
      3. C. All Reynolds Numbers
    3. III. Permeability
    4. IV. Multidimensional Flow
    5. V. Packed Columns
    6. VI. Filtration
      1. A. Governing Equations
      2. B. Constant Pressure Operation
      3. C. Constant Flow Operation
      4. D. Cycle Time
      5. E. Plate-and-Frame Filter
      6. F. Rotary Drum Filter
      7. G. Compressible Cake
    7. Summary
    8. Problems
    9. Notation
    10. References
  24. Chapter 15 Fluidization and Sedimentation
    1. I. Fluidization
      1. A. Governing Equations
      2. B. Minimum Bed Voidage
      3. C. Nonspherical Particles
    2. II. Sedimentation
      1. A. Hindered Settling
      2. B. Fine Particles
      3. C. Coarse Particles
      4. D. All Flow Regimes
    3. III. Generalized Sedimentation/Fluidization
    4. IV. Thickening
    5. Summary
    6. Problems
    7. Notation
    8. References
  25. Chapter 16 Two-Phase Flow
    1. I. Scope
    2. II. Definitions
    3. III. Fluid-Solid Two-Phase Pipe Flows
      1. A. Pseudohomogeneous Flows
      2. B. Heterogeneous Liquid-Solid Flows
      3. C. Pneumatic Solids Transport
        1. 1. Horizontal Transport
        2. 2. Vertical Transport
    4. IV. Gas-Liquid Two-Phase Pipe Flow
      1. A. Flow Regimes
      2. B. Homogeneous Gas-Liquid Models
        1. 1. Omega Method for Homogeneous Equilibrium Flow
        2. 2. Generalized (Homogeneous Direct Integration) Method for All Homogeneous Flow Conditions
      3. C. Separated Flow Models
      4. D. Slip and Holdup
    5. Summary
    6. Problems
    7. Notation
    8. References
  26. Appendix A: Viscosities and Other Properties of Gases and Liquids
  27. Appendix B: Generalized Viscosity Plot
  28. Appendix C: Properties of Gases
  29. Appendix D: Pressure–Enthalpy Diagrams for Various Compounds
  30. Appendix E: Microscopic Conservation Equations in Rectangular, Cylindrical, and Spherical Coordinates
  31. Appendix F: Standard Steel Pipe Dimensions and Capacities
  32. Appendix G: Flow of Water/Air through Schedule 40 Pipe
  33. Appendix H: Typical Pump Head Capacity Range Charts
  34. Appendix I: Fanno Line Tables for Adiabatic Flow of Air in a Constant Area Duct
  35. Index