366 Combinatorial Maps for Computer Graphics and Image Processing
[76] G. Damiand, R. Gonzalez-Diaz, and S. Peltier. Removal operations in
nD generalized maps for efficient homology computation. In Proc. of
International Workshop on Computational Topology in Image Context,
volume 7309 of LNCS, pages 20–29, Bertinoro, Italy, May 2012. Springer.
[77] G. Damiand and P. Lienhardt. Removal and contraction for n-
dimensional generalized maps. In Proc. of International Conference on
Discrete Geometry for Computer Imagery, volume 2886 of LNCS, pages
408–419, Naples, Italy, November 2003. Springer Berlin/Heidelberg.
[78] G. Damiand, S. Peltier, and L. Fuchs. Computing homology for sur-
faces with generalized maps: Application to 3D images. In Proc. of
International Symposium on Visual Computing, volume 4292 of LNCS,
pages 235–244, Lake Tahoe, Nevada, USA, November 2006. Springer
Berlin/Heidelberg.
[79] G. Damiand, S. Peltier, and L. Fuchs. Computing homology generators
for volumes using minimal generalized maps. In Proc. of International
Workshop on Combinatorial Image Analysis, volume 4958 of LNCS,
pages 63–74, Buffalo, NY, USA, April 2008. Springer Berlin/Heidelberg.
[80] G. Damiand, S. Peltier, L. Fuchs, and P. Lienhardt. Topological map:
An efficient tool to compute incrementally topological features on 3D
images. In Proc. of International Workshop on Combinatorial Image
Analysis, volume 4040 of LNCS, pages 1–15, Berlin, Germany, June
2006. Springer Berlin/Heidelberg.
[81] G. Damiand and P. Resch. Topological map based algorithms for 3D
image segmentation. In Proc. of International Conference on Discrete
Geometry for Computer Imagery, volume 2301 of LNCS, pages 220–231,
Bordeaux, France, April 2002. Springer Berlin/Heidelberg.
[82] G. Damiand and P. Resch. Split and merge algorithms defined on topo-
logical maps for 3D image segmentation. Graphical Models, 65(1-3):149–
167, May 2003.
[83] G. Damiand, C. Solnon, C. de la Higuera, J.-C. Janodet, and E. Samuel.
Polynomial algorithms for subisomorphism of nD open combinatorial
maps. Computer Vision and Image Understanding, 115(7):996–1010,
July 2011.
[84] X. Daragon, M. Couprie, and G. Bertrand. Discrete frontiers. In Proc. of
International Conference on Discrete Geometry for Computer Imagery,
volume 2886 of LNCS, pages 236–245, Naples, Italy, 2003. Springer.
[85] X. Daragon, M. Couprie, and G. Bertrand. Discrete surfaces and frontier
orders. Journal of Mathematical Imaging and Vision, 23:379–399, 2005.

Get Combinatorial Maps now with O’Reilly online learning.

O’Reilly members experience live online training, plus books, videos, and digital content from 200+ publishers.