REFERENCES
245
the loop, and its value can be predicted by eddy-current theory alone.
No need to argue about the "physical unreality" of the situation"
(all
eddy current modellings are "unreal" to a comparable degree!) and to
add irrelevant considerations on the way the solenoid is energized, on
finite propagation speeds, and so forth [PK, Te].
This problem is relevant to discussions of the Aharonov-Bohm effect
(cf. Remark A.2). Most papers on the subject assume a straight, infinite
solenoid, instead of the above toroidal one, which makes some analytical
computations easier, but also needlessly raises side issues.
REFERENCES
[BT]
[B1]
[BV]
[BV']
[B&]
[Bo]
[Br]
[CN]
[GF]
[GH]
[GK]
[HS]
K.J. Binns, P.J. Lawrenson, C.W. Trowbridge:
The Analytic and Numerical Solution
of Electric and Magnetic Fields,
Wiley (Chichester), 1992.
A. Bossavit: "On Finite Elements for the Electricity Equation", in
The Mathematics
of Finite Elements
(J.R. Whiteman, ed.), Academic Press (London), 1982, pp.
85-92.
A. Bossavit, J.C. V6rit6: "A Mixed FEM-BIEM Method to Solve Eddy-Current
Problems", IEEE Trans., MAG-18, 2 (1982), pp. 431-435.
A. Bossavit, J.C. V6rit6: "The TRIFOU Code: Solving the 3-D Eddy-Currents
Problem by Using H as State Variable", IEEE Trans., MAG-19, 6 (1983), pp.
2465-2470.
A. Bossavit, P.R. Kotiuga, A. Vourdas, K.J. Binns: Correspondence on
"Magnetostatics with scalar potentials in multiply connected regions", IEE
Proc.,
136, Pt. A, 5 (1989), pp. 260-261, 137,
Pt.
A,4 (1989), pp. 231-232.
A. Bossavit: "A Numerical Approach to Transient 3D Non-linear Eddy-current
Problems", Int. J.
Applied Electromagnetics in Materials,
1, 1 (1990), pp. 65-75.
M.L. Brown: "Scalar Potentials in Multiply Connected Domains", Int. J.
Numer.
Meth. Engng., 20,
4 (1984), pp. 665-680.
J. Crank, P. Nicolson: in
Proc. Camb. Phil. Soc. math. phys. Sci,
43 (1947), p. 50.
O.P. Gandhi, J.F. DeFord, H. Kanai: "Impedence Method for Calculation of Power
Deposition Patterns in Magnetically Induced Hyperthermia", IEEE Trans., BME-
31, 10 (1984), pp. 644-651.
M.J. Greenberg, J.R. Harper:
Algebraic Topology, A First Course,
Benjamin/
Cummings (Reading, MA), 1981.
P.W. Gross, P.R. Kotiuga: "A Challenge for Magnetic Scalar Potential Formulations
of 3-D Eddy Current Problems: Multiply Connected Cuts in Multiply Connected
Regions which Necessarily Leave the Cut Complement Multiply Connected", in
Electric and Magnetic Fields
(A. Nicolet & R. Beulmans, eds.), Plenum Press
(New York, London), 1995, pp. 1-20.
C.S. Harrold, J. Simkin: "Cutting multiply connected domains", IEEE
Trans.,
MAG-21, 6 (1985), pp. 2495-2498.
246
CHAPTER 8 Eddy-current Problems
[K&]
[K&]
[Ko]
[LR]
[RL]
[Na]
[PK]
[RR]
[Ro]
[Se]
[Te]
[Ve]
[VB]
Y. Kanai, T. Tsukamoto, Y. Saitoh, M. Miyakawa, T. Kashiwa: "Analysis of a
Hyperthermic Treatment using a Reentrant Resonant Cavity Applicator for a
Heterogeneous Model with Blood Flow", IEEE Trans., MAG-33, 2 (1997), pp.
2175-2178.
L. Kettunen, K. Forsman, A. Bossavit: "Formulation of the eddy current problem
in multiply connected regions in terms of h', Int. J.
Numer. Meth.
Engng., 41,
3-4(1998).
P.R. Kotiuga: "An algorithm to make cuts for magnetic scalar potentials in tetrahedral
meshes based on the finite element method", IEEE Trans., MAG-25, 5 (1989), pp.
4129-4131.
P.J. Leonard, D. Rodger: "A new method for cutting the magnetic scalar potential
in multiply connected eddy current problems", IEEE Trans., MAG-25, 5 (1989),
pp. 4132-4134.
P.J. Leonard, H.C. Lai, R.J. Hill-Cottingham, D. Rodger: "Automatic Implementation
of Cuts in Multiply Connected Magnetic Scalar Regions for 3D Eddy Current
Models", IEEE Trans., MAG-29, 2 (1993), pp. 1368-1377.
T. Nakata (ed.): 3-D Electromagnetic Field Analysis (Proc. Int. Syrup. & TEAM
Workshop, Okayama, Sept. 1989), James and James (London), 1990 (Supplement
A to Vol. 9 of the Journal COMPEL).
R. Protheroe, D. Koks: "The transient magnetic field outside an infinite solenoid",
Am. J. Phys., 64, 11 (1996), pp. 1389-1393.
Z. Ren, A. Razek: "Boundary Edge Elements and Spanning Tree Technique in
Three-Dimensional Electromagnetic Field Computation", Int. J. Numer.
Meth.
Engng., 36, 17 (1993), pp. 2877-2893.
D. Rolfsen:
Knots and
Links, Publish or Perish, Inc. (Wilmington, DE 19801,
USA), 1976.
H.
Seifert: "Uber das Geschlecht yon Knoten", Math. Ann., 110 (1934), pp. 571-592.
J.D. Templin: "Exact solution to the field equations in the case of an ideal, infinite
solenoid", Am. J. Phys., 63, 10 (1995), pp. 916-920.
J.C. V6rit6: "Calculation of multivalued potentials in exterior regions", IEEE Trans.,
MAG-23, 3 (1987), pp. 1881-1887.
A. Vourdas, K.J. Binns: "Magnetostatics with scalar potentials in multiply connected
regions", IEE Proc., 136, Pt. A, 2 (1989), pp. 49-54.

Get Computational Electromagnetism now with O’Reilly online learning.

O’Reilly members experience live online training, plus books, videos, and digital content from 200+ publishers.