8Support vector machines algorithms
This chapter covers the following items:
–Algorithm for support vectors
–Algorithm for classifying linear and nonlinear
–Examples and applications
Support vector machines (SVMs) are used as a method for classifying linear and nonlinear data. This chapter discusses on how SVM works. It basically utilizes a nonlinear mapping for converting the original training data into a higher dimension in which it finds the linear optimal separating hyperplane (a “decision boundary” splitting the datasets of a class from another one). If an appropriate nonlinear mapping is used with an adequately high dimension, data from two classes can at all times be split by a hyperplane [1–5]. Through the use of support vectors (“essential” ...
Get Computational Methods for Data Analysis now with the O’Reilly learning platform.
O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.