1 Introduction

To remain competitive, today’s industries need to adapt to increasingly dynamic and turbulent markets. Dynamic production systems1 and networks need to be designed that respond rapidly and effectively to trends in demand and production disturbances. Digitalization is transforming production planning, operations, control, and other functions through extensive use of digitized data, digital communication, automatic decision-making, simulation, and software-based decision-making tools incorporating AI algorithms. New sensing, communication, and actuation technologies are making new types of measurements and other data available, reducing delays in decision-making and implementing decisions, and facilitating embedding of models to create more “intelligent” production systems with improved performance and robustness in the presence of turbulence in operating conditions.

In this increasingly dynamic and digital environment, production engineers and managers need tools that allow them to mathematically model, analyze, and design production systems and the strategies, policies, and decision-making components that make them responsive and robust in the presence of disturbances in the production environment, and mitigate the negative impacts of these disturbances. Discrete event simulation, queuing networks, and Petri nets have proved to be valuable tools for modeling the detailed behavior of production systems and predicting how important variables vary with time in response ...

Get Control Theory Applications for Dynamic Production Systems now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.