Chapter 15: Principal Component Analysis

Dimension reduction is one of the more important concepts/strategies in machine learning. It is sometimes equated with feature selection, but that is too narrow a view of dimension reduction. Our models often have to deal with an excess of features, some of which are capturing the same information. Not addressing the issue substantially increases the risk of overfitting or of unstable results. But dropping some of our features is not the only tool in our toolbox here. Feature extraction strategies, such as principal component analysis (PCA), can often yield good results.

We can use PCA to reduce the dimensions (the number of features) of our dataset without losing significant predictive power. The number ...

Get Data Cleaning and Exploration with Machine Learning now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.