Video description
21+ Hours of Video Instruction
Data Science Fundamentals Part II teaches you the foundational concepts, theory, and techniques you need to know to become an effective data scientist. The videos present you with applied, exampledriven lessons in Python and its associated ecosystem of libraries, where you get your hands dirty with real datasets and see real results.
Description
If nothing else, by the end of this video course you will have analyzed a number of datasets from the wild, built a handful of applications, and applied machine learning algorithms in meaningful ways to get real results. And all along the way you learn the best practices and computational techniques used by professional data scientists. You get handson experience with the PyData ecosystem by manipulating and modeling data. You explore and transform data with the pandas library, perform statistical analysis with SciPy and NumPy, build regression models with statsmodels, and train machine learning algorithms with scikitlearn. All throughout the course you learn to test your assumptions and models by engaging in rigorous validation. Finally, you learn how to share your results through effective data visualization.
Code:https://github.com/hopelessoptimism/datasciencefundamentals
Resources: http://hopelessoptimism.com/datasciencefundamentals
Forum:https://gitter.im/datasciencefundamentals
Data: http://insideairbnb.com/getthedata.html
About the Instructor
Jonathan Dinu is an author, researcher, and most importantly educator. He is currently pursuing a Ph.D. in Computer Science at Carnegie Mellon's Human Computer Interaction Institute (HCII) where he is working to democratize machine learning and artificial intelligence through interpretable and interactive algorithms. Previously, he founded Zipfian Academy (an immersive data science training program acquired by Galvanize), has taught classes at the University of San Francisco, and has built a Data Visualization MOOC with Udacity. In addition to his professional data science experience, he has run data science trainings for a Fortune 500 company and taught workshops at Strata, PyData, and DataWeek (among others). He first discovered his love of all things data while studying Computer Science and Physics at UC Berkeley, and in a former life he worked for Alpine Data Labs developing distributed machine learning algorithms for predictive analytics on Hadoop.
Jonathan has always had a passion for sharing the things he has learned in the most creative ways he can. When he is not working with students you can find him blogging about data, visualization, and education at hopelessoptimism.com or rambling on Twitter @jonathandinu.
Skill Level
 Beginner
What You Will Learn
 How to get up and running with a Python data science environment
 The basics of the data science process and what each step entails
 How (and why) to perform exploratory data analysis in Python with the pandas library
 The theory of statistical estimation to make inferences from your data and test hypotheses
 The fundamentals of probability and how to use scipy to work with distributions in Python
 How to build and evaluate machine learning models with scikitlearn
 The basics of data visualization and how to communicate your results effectively
 The importance of creating reproducible analyses and how to share them effectively
Who Should Take This Course
 Aspiring data scientists looking to break into the field and learn the essentials necessary.
 Journalists, consultants, analysts, or anyone else who works with data looking to take a programmatic approach to exploring data and conducting analyses.
 Quantitative researchers interested in applying theory to real projects and taking a computational approach to modeling.
 Software engineers interested in building intelligent applications driven by machine learning.
 Practicing data scientists already familiar with another programming environment looking to learn how to do data science with Python.
Course Requirements
 Basic understanding of programming.
 Familiarity with Python and statistics are a plus.
Lesson 7: Exploring Data—Analysis and Visualization
Lesson 7 starts with a short historical diversion on the process and evolution of exploratory data analysis, to help you understand the context behind it. John Tukey, the godfather of EDA, said in the Future of Data Analysis that "Far better an approximate answer to the right question, which is often vague, than an exact answer to the wrong question, which can always be made precise."
Next you use matplotlib and seaborn, two Python visualization libraries, to learn how to visually explore a single dimension with histograms and boxplots. But a single dimension can only get us so far. By using scatterplots and other charts for higher dimensional visualization you see how to compare columns of our data to look for relationships between them.
The lesson finishes with a cautionary tale of when statistics lie by exploring the impact of mixed effects and Simpson's paradox.
Lesson 8: Making Inferences—Statistical Estimation and Evaluation
In Lesson 8 we lay the groundwork for the methods and theory we need to make inferences from data, starting with an overview of the various approaches and techniques that are part of the rich history of statistical analysis.
Next you see how to leverage computational and samplingbased approaches to make inferences from your data. After learning the basics of hypothesis testing, one of the most used techniques in the data scientist's tool belt, you see how to use it to optimize a web application with A/B testing. All along the way you learn to appreciate the importance of uncertainty and see how to bound your reasoning with confidence intervals.
And finally, the lesson finishes by discussing the ageold question of correlation versus causation, why it matters, and how to account for it in your analyses.
Lesson 9: Statistical Modeling and Machine Learning
In Lesson 9 you learn how to leverage statistical models to build a powerful model to predict AirBnB listing prices and infer which listings are undervalued. It starts with a primer on probability and statistical distributions using SciPy and NumPy, including how to estimate parameters and fit distributions to data.
Next you learn about the theory of regression through a handson application with our AirBnB data and see how to model correlations in your data. By solving for the line of best fit and seeing how to understand its coefficients you can make inferences about your data.
But building a model is only one side of the coin, and if you cannot effectively evaluate how well it performs it might as well be useless. Next you learn how to evaluate a regression model, learn about what could go wrong when fitting a model, and learn to overcome these challenges.
The lesson finishes by talking about the differences between and nuances of statistics, modeling, and machine learning. I provide an overview of the various types of models and algorithms used for machine learning and introduce how to leverage scikitlearn—a robust machine learning library in Python—to make predictions.
About LiveLessons Video Training
The LiveLessons Video Training series publishes hundreds of handson, expertled video tutorials covering a wide selection of technology topics designed to teach you the skills you need to succeed. This professional and personal technology video series features worldleading author instructors published by your trusted technology brands: AddisonWesley, Cisco Press, IBM Press, Pearson IT Certification, Prentice Hall, Sams, and Que. Topics include: IT Certification, Programming, Web Development, Mobile Development, Home and Office Technologies, Business and Management, and more. View all LiveLessons on InformIT at: http://www.informit.com/livelessons
Table of contents

Lesson 7: Exploring DataAnalysis and Visualization
 Topics
 7.1 Introduction to the pandas Library, Part 1
 7.1 Introduction to the pandas Library, Part 2
 7.1 Introduction to the pandas Library, Part 3
 7.2 Data Manipulation with Pandas
 7.3 Grouping and Summarizing Data with Pandas
 7.4 Exploratory versus Explanatory Visualization, Part 1
 7.4 Exploratory versus Explanatory Visualization, Part 2
 7.5 Visualizing One Dimension: Histograms and Boxplots
 7.6 Visualizing Two Dimensions: Bars, Lines, and Scatterplots
 7.7 Multivariate Visualization: Facets, Small Multiples, and Dashboards, Part 1
 7.7 Multivariate Visualization: Facets, Small Multiples, and Dashboards, Part 2
 7.8 Visualizing One Dimension: Histogram and KDE, Part 1
 7.8 Visualizing One Dimension: Histogram and KDE, Part 2
 7.9 Visualizing One Dimension: Comparing Distributions, Part 1
 7.9 Visualizing One Dimension: Comparing Distributions, Part 2
 7.9 Visualizing One Dimension: Comparing Distributions, Part 3
 7.10 Visualizing Two Dimensions: Line Charts and Scatter Plots
 7.11 Mixed Effects and Simpson's Paradox

Lesson 8: Making InferencesStatistical Estimation and Evaluation
 Topics
 8.1 What Problem Is Statistics the Answer To?Part 1
 8.1 What Problem Is Statistics the Answer To?Part 2
 8.2 The Statistical Framework: Descriptive, Inferential, and Predictive
 8.3 NonParametric EstimationThe Bootstrap
 8.4 Quantifying UncertaintyConfidence Intervals, Part 1
 8.4 Quantifying UncertaintyConfidence Intervals, Part 2
 8.5 Correlation versus Causation, Part 1
 8.5 Correlation versus Causation, Part 2
 8.5 Correlation versus Causation, Part 3
 8.6 Evaluating HypothesesSignificance Testing, Part 1
 8.6 Evaluating HypothesesSignificance Testing, Part 2
 8.6 Evaluating HypothesesSignificance Testing, Part 3
 8.6 Evaluating HypothesesSignificance Testing, Part 4
 8.6 Evaluating HypothesesSignificance Testing, Part 5
 8.7 Experimental DesignAssumptions and Caveats
 8.8 ReviewWhich Approach to Choose

Lesson 9: Statistical Modeling and Machine Learning
 Topics
 9.1 What, Why, and How Machines Learn
 9.2 A Machine Learning Taxonomy
 9.3 Probability and Generative Models
 9.4 Estimation with the Method of Moments
 9.5 Maximum Likelihood Estimation
 9.6 Computing the Maximum Likelihood Estimator, Part 1
 9.6 Computing the Maximum Likelihood Estimator, Part 2
 9.7 Introduction to Supervised Learning: Ordinary Least Squares Regression
 9.8 Visualizing Regression with Seaborn
 9.9 Analytical Regression with statsmodels
 9.10 Interpreting Regression Models
 9.11 Regression Three Ways  MLE, the Normal Equation, and Gradient Descent, Part 1
 9.11 Regression Three Ways  MLE, the Normal Equation, and Gradient Descent, Part 2
 9.11 Regression Three Ways  MLE, the Normal Equation, and Gradient Descent, Part 3
 9.12 Evaluating Regression
 9.13 Introduction to Classification: Logistic Regression
 9.14 Components of a Model: The Hypothesis, Cost Function, and Optimization
 9.15 Introduction to scikitlearn: Logistic Regression Appliedogistic Regression Example
 9.16 Evaluating Classification Models
 9.17 Evaluating Models with scikitlearn
 9.18 Debugging Machine Learning: Imbalanced Classes
 9.19 Model SelectionHyperparameters and Regularization
Product information
 Title: Data Science Fundamentals Part 2: Machine Learning and Statistical Analysis
 Author(s):
 Release date: April 2019
 Publisher(s): Pearson
 ISBN: 0134778871
You might also like
video
Basic Statistics and Data Mining for Data Science
Data science is an everevolving field, with exponentially growing popularity. Data science includes techniques and theories …
video
Machine Learning for Finance
Machine Learning for Finance is a perfect course for financial professionals entering the fintech domain. It …
video
Data Analytics and Machine Learning Fundamentals LiveLessons Video Training
More than 7.5 Hours of Video Instruction Overview Nearly every company in the world is evaluating …
video
Learning Python Data Analysis
Python features numerous numerical and mathematical toolkits such as: Numpy, Scipy, Scikit learn and SciKit, all …