Skip to Content
Data Science: The Hard Parts
book

Data Science: The Hard Parts

by Daniel Vaughan
November 2023
Beginner to intermediate content levelBeginner to intermediate
254 pages
6h 43m
English
O'Reilly Media, Inc.

Overview

This practical guide provides a collection of techniques and best practices that are generally overlooked in most data engineering and data science pedagogy. A common misconception is that great data scientists are experts in the "big themes" of the discipline—machine learning and programming. But most of the time, these tools can only take us so far. In practice, the smaller tools and skills really separate a great data scientist from a not-so-great one.

Taken as a whole, the lessons in this book make the difference between an average data scientist candidate and a qualified data scientist working in the field. Author Daniel Vaughan has collected, extended, and used these skills to create value and train data scientists from different companies and industries.

With this book, you will:

  • Understand how data science creates value
  • Deliver compelling narratives to sell your data science project
  • Build a business case using unit economics principles
  • Create new features for a ML model using storytelling
  • Learn how to decompose KPIs
  • Perform growth decompositions to find root causes for changes in a metric

Daniel Vaughan is head of data at Clip, the leading paytech company in Mexico. He's the author of Analytical Skills for AI and Data Science (O'Reilly).

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Data Science for Business

Data Science for Business

Foster Provost, Tom Fawcett
Learning Data Science

Learning Data Science

Sam Lau, Joseph Gonzalez, Deborah Nolan

Publisher Resources

ISBN: 9781098146467Errata PageSupplemental Content