Chapter 1. Data I/O
Events happen all around us, continuously. Occasionally, we make a record of a discrete event at a certain point in time and space. We can then define data as a collection of records that someone (or something) took the time to write down or present in any format imaginable. As data scientists, we work with data in files, databases, web services, and more. Usually, someone has gone through a lot of trouble to define a schema or data model that precisely denotes the names, types, tolerances, and inter-relationships of all the variables. However, it is not always possible to enforce a schema during data acquisition. Real data (even in well-designed databases) often has missing values, misspellings, incorrectly formatted types, duplicate representations for the same value, and the worst: several variables concatenated into one. Although you are probably excited to implement machine-learning algorithms and create stunning graphics, the most important and time-consuming aspect of data science is preparing the data and ensuring its integrity.
What Is Data, Anyway?
Your ultimate goal is to retrieve data from its source, reduce the data via statistical analysis or learning, and then present some kind of knowledge about what was learned, usually in the form of a graph. However, even if your result is a single value such as the total revenue, most engaged user, or a quality factor, you still follow the same protocol: input data → reductive analysis → output data.
Considering ...