Skip to Content
Data Science with Python and Dask
book

Data Science with Python and Dask

by Jesse Daniel
July 2019
Intermediate to advanced content levelIntermediate to advanced
296 pages
9h 1m
English
Manning Publications
Content preview from Data Science with Python and Dask

3 Introducing Dask DataFrames

This chapter covers

  • Defining structured data and determining when to use Dask DataFrames
  • Exploring how Dask DataFrames are organized
  • Inspecting DataFrames to see how they are partitioned
  • Dealing with some limitations of DataFrames

In the previous chapter, we started exploring how Dask uses DAGs to coordinate and manage complex tasks across many machines. However, we only looked at some simple examples using the Delayed API to help illustrate how Dask code relates to elements of a DAG. In this chapter, we’ll begin to take a closer look at the DataFrame API. We’ll also start working through the NYC Parking Ticket data following a fairly typical data science workflow. This workflow and their corresponding chapters ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Practical Data Science with Python

Practical Data Science with Python

Nathan George
Python: End-to-end Data Analysis

Python: End-to-end Data Analysis

Phuong Vothihong, Martin Czygan, Ivan Idris, Magnus Vilhelm Persson, Luiz Felipe Martins

Publisher Resources

ISBN: 9781617295607OtherSupplemental ContentPublisher SupportPublisher WebsiteSupplemental ContentPurchase Link