Training Multiple Layers of Neurons

Previously, in Chapter 6, Training a Single Neuron, we explored a model involving a single neuron and the concept of the perceptron. A limitation of the perceptron model is that, at best, it can only produce linear solutions on a multi-dimensional hyperplane. However, this limitation can be easily solved by using multiple neurons and multiple layers of neurons in order to produce highly complex non-linear solutions for separable and non-separable problems. This chapter introduces you to the first challenges of deep learning using the Multi-Layer Perceptron (MLP) algorithm, such as a gradient descent technique for error minimization, followed by hyperparameter optimization experiments to determine trustworthy ...

Get Deep Learning for Beginners now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.