Empirical design of neural networks

While using neural networks in regression problems (that include prediction), there is no fixed number of hidden neurons, so usually the solver chooses an arbitrary number of neurons and then varies it according to the results produced by the networks created. This procedure may be repeated a number of times until a network with a satisfying criterion is found.

Designing experiments

Experiments can be made on the same training and test datasets, while varying other network parameters, such as learning rate, normalization, and the number of hidden units. The objective is to choose the neural network that presents the best performance from the experiments. The best performance is assigned to the network that presents ...

Get Deep Learning: Practical Neural Networks with Java now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.