Skip to Content
Deep Learning Quick Reference
book

Deep Learning Quick Reference

by Mike Bernico
March 2018
Intermediate to advanced
272 pages
7h 53m
English
Packt Publishing
Content preview from Deep Learning Quick Reference

Managing bias and variance in deep neural networks

Now that we've defined how we will structure data and refreshed ourselves on bias and variance, let's consider how we will control bias and variance errors in our deep neural networks.

  • High bias: A network with high bias will have a very high error rate when predicting on the training set. The model is not doing well at fitting the data. In order to reduce the bias you will likely need to change the network architecture. You may need to add layers, neurons, or both. It may be that your problem is better solved using a convolutional or recurrent network.

Of course, sometimes a problem is high bias because of a lack of signal or very difficult problem, so be sure to calibrate your expectations ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Keras Deep Learning Cookbook

Keras Deep Learning Cookbook

Rajdeep Dua, Sujit Pal, Manpreet Singh Ghotra
Deep Learning with Keras

Deep Learning with Keras

Antonio Gulli, Sujit Pal

Publisher Resources

ISBN: 9781788837996Supplemental Content