Skip to Content
Deep Learning with PyTorch
book

Deep Learning with PyTorch

by Eli Stevens, Thomas Viehmann, Luca Pietro Giovanni Antiga
July 2020
Intermediate to advanced
520 pages
15h 29m
English
Manning Publications
Content preview from Deep Learning with PyTorch

3 It starts with a tensor

This chapter covers

  • Understanding tensors, the basic data structure in PyTorch
  • Indexing and operating on tensors
  • Interoperating with NumPy multidimensional arrays
  • Moving computations to the GPU for speed

In the previous chapter, we took a tour of some of the many applications that deep learning enables. They invariably consisted of taking data in some form, like images or text, and producing data in another form, like labels, numbers, or more images or text. Viewed from this angle, deep learning really consists of building a system that can transform data from one representation to another. This transformation is driven by extracting commonalities from a series of examples that demonstrate the desired mapping. For ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Deep Learning with PyTorch

Deep Learning with PyTorch

Vishnu Subramanian
Grokking Deep Learning

Grokking Deep Learning

Andrew W. Trask

Publisher Resources

ISBN: 9781617295263Supplemental ContentPublisher SupportOtherPublisher WebsiteSupplemental ContentErrata PagePurchase Link