Skip to Content
Deep Learning with PyTorch
book

Deep Learning with PyTorch

by Eli Stevens, Thomas Viehmann, Luca Pietro Giovanni Antiga
July 2020
Intermediate to advanced
520 pages
15h 29m
English
Manning Publications
Content preview from Deep Learning with PyTorch

4 Real-world data representation using tensors

This chapter covers

  • Representing real-world data as PyTorch tensors
  • Working with a range of data types
  • Loading data from a file
  • Converting data to tensors
  • Shaping tensors so they can be used as inputs for neural network models

In the previous chapter, we learned that tensors are the building blocks for data in PyTorch. Neural networks take tensors as input and produce tensors as outputs. In fact, all operations within a neural network and during optimization are operations between tensors, and all parameters (for example, weights and biases) in a neural network are tensors. Having a good sense of how to perform operations on tensors and index them effectively is central to using tools like PyTorch ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Deep Learning with PyTorch

Deep Learning with PyTorch

Vishnu Subramanian
Grokking Deep Learning

Grokking Deep Learning

Andrew W. Trask

Publisher Resources

ISBN: 9781617295263Supplemental ContentPublisher SupportOtherPublisher WebsiteSupplemental ContentErrata PagePurchase Link