Implementing an autoencoder

Training an autoencoder is basically a simple process. It is a neural network whose output is same as the input. The basic architecture of the autoencoder is as follows.

There is an input layer, which is followed by a few hidden layers, and then, after a certain depth, the hidden layers follow the reverse architecture until we reach a point where the final layer is the same as the input layer. We pass data into the network whose embedding we wish to learn.

In this example, we use the images input by the MNIST dataset. We begin our implementation by importing all the main libraries:

import tensorflow as tf import numpy as np import matplotlib.pyplot as plt import mnist_data 

We then prepare the MNIST dataset. We ...

Get Deep Learning with TensorFlow now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.