Skip to Content
Deep Learning with PyTorch
book

Deep Learning with PyTorch

by Vishnu Subramanian
February 2018
Intermediate to advanced
262 pages
6h 59m
English
Packt Publishing
Content preview from Deep Learning with PyTorch

Inception

In most of the deep learning algorithms we have seen for computer vision models, we either pick up a convolution layer with a filter size of 1 x 1, 3 x 3, 5 x 5, 7 x 7, or a map pooling layer. The Inception module combines convolutions of different filter sizes and concatenates all the outputs together. The following image makes the Inception model clearer:

Image source: https://arxiv.org/pdf/1409.4842.pdf

In this Inception block image, the convolution of different sizes is applied to the input, and the outputs of all these layers are concatenated. This is the simplest version of an Inception module. There is another variant of an ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Deep Learning with PyTorch

Deep Learning with PyTorch

Eli Stevens, Thomas Viehmann, Luca Pietro Giovanni Antiga
Grokking Deep Learning

Grokking Deep Learning

Andrew W. Trask

Publisher Resources

ISBN: 9781788624336Supplemental Content