Implementing an RNN for spam prediction

In this section, we will see how to implement an RNN in TensorFlow to predict spam/ham from texts.

Data description and preprocessing

The popular spam dataset from the UCI ML repository will be used, which can be downloaded from http://archive.ics.uci.edu/ml/machine-learning-databases/00228/smssp amcollection.zip.

The dataset contains texts from several emails, some of which were marked as spam. Here we will train a model that will learn to distinguish between spam and non-spam emails using only the text of the email. Let's get started by importing the required libraries and model:

import os import re import io import requests import numpy as np import matplotlib.pyplot as plt import tensorflow as tf from zipfile ...

Get Deep Learning with TensorFlow - Second Edition now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.