Benchmarking models

Benchmarking and evaluation are core to the success of any deep learning exploration. We will develop some simple code to evaluate two key performance measures: the accuracy and the training time. We will use the following model template:

This model is the most common and basic linear template for solving MNIST. You can see we initialize each layer, in theinit method, by creating a class variable that is assigned to a PyTorch nn object. Here, we initialize two linear functions and a ReLU function. The nn.Linear function takes an input size of 28*28 or 784. This is the size of each of the training images. The output channels ...

Get Deep Learning with PyTorch Quick Start Guide now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.