9
Generative Models
Generative models are a type of machine learning algorithm that is used to create data. They are used to generate new data that is similar to the data that was used to train the model. They can be used to create new data for testing or to fill in missing data. Generative models are used in many applications, such as density estimation, image synthesis, and natural language processing. The VAE discussed in Chapter 8, Autoencoders, was one type of generative model; in this chapter, we will discuss a wide range of generative models, Generative Adversarial Networks (GANs) and their variants, flow-based models, and diffusion models.
GANs have been defined as the most interesting idea in the last 10 years in ML (https://www.quora.com/What-are-some-recent-and-potentially-upcoming-breakthroughs-in-deep-learning ...
Get Deep Learning with TensorFlow and Keras - Third Edition now with the O’Reilly learning platform.
O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.