Book description
エンタープライズ向けのディープラーニングの解説書。企業でディープラーニングアプリケーションを開発、運用するための実践的な手法を紹介します。対象読者はソフトウェア開発の現場で活躍する実務者。前半はディープラーニング初心者、後半はJavaエンジニア向けの構成です。機械学習、ニューラルネットワークの基礎から始め、ディープラーニングの基本的な概念、実際にチューニングを行う際のベストプラクティス、データのETL(抽出・変換・ロード)の方法、Apache Sparkを用いた並列化について、JavaライブラリDeep Learning4J(DL4J)の開発者でもある著者がわかりやすく丁寧に解説します。
You might also like
book
生成 Deep Learning ―絵を描き、物語や音楽を作り、ゲームをプレイする
生成型ディープラーニングの解説書。「絵を描く」「曲を作る」といった、これまで人間にしかできないと思われていた創造的な作業を機械に行わせるという、いま最もホットな技術の基礎から応用までをJupyterノートブック環境で実際に試しながら学びます。第I部は基礎編です。機械学習プログラミング、変分オートエンコーダ、GANやRNNなど、生成モデルの作成において重要な基礎技術を学びます。第II部は応用編です。CycleGAN、エンコーダ―デコーダモデル、MuseGANなどのモデルを作成し、作画、作文、作曲といった創造的なタスクに取り組みます。さらには、実環境を用いずにゲームプレイの学習を可能にする、世界モデルを使った強化学習にも取り組みます。
book
直感 Deep Learning ―Python×Kerasでアイデアを形にするレシピ
直感的かつ短いコードでアイデアを形にできるKerasはTensorFlowのラッパーとして大人気のライブラリです。本書でもTensorFlowをバックエンドとして使用し、自然言語処理、画像識別、画像生成、音声合成、テキスト生成、強化学習、AIゲームプレイなどさまざまなモデルをPythonとKerasで実装します。対象読者は、各種のディープラーニングを素早く実装したいプログラマー、データサイエンティスト。ディープラーニングを支える技術の速習にも好適です。数式はなるべく使わずにコードと図で説明します。ニューラルネットワークおよびPython 3の基本を理解している人であれば誰でも始めることができます。
book
実践 Deep Learning ―PythonとTensorFlowで学ぶ次世代の機械学習アルゴリズム
2000年代にニューラルネットワークの研究が再び活発になりました。現在、ディープラーニングは近代的な機械学習の道を切り開いている非常に活発な研究領域となっています。Google、Microsoft、Facebookなどの企業では、社内のディープラーニングチームが急成長しています。しかし、多くの人にとってディープラーニングはまだまだとても複雑で困難な課題です。本書ではサンプルのPython 3プログラムと簡潔な説明を通してこの複雑な分野の主要な概念を紹介します。微積分、行列演算、Pythonの基礎があれば誰でも本書を始めることができます。
book
ゼロからはじめるデータサイエンス 第2版 ―Pythonで学ぶ基本と実践
本書はPythonプログラミングを通してデータサイエンスの基本知識を「ゼロから学ぶ」ことができる入門書です。読者は架空のソーシャルネットワーク運営企業、データサイエンス・スター社のデータサイエンティストとして、さまざまな課題を解決しながら、必要な知識とスキルを着実に積み上げていきます。Pythonプログラミングの基礎から線形代数、統計確率の基礎、回帰、機械学習、ナイーブベイズ、決定木、ニューラルネットワーク、ディープラーニング、自然言語処理、ネットワーク分析、リコメンドシステム、データベースとSQL、MapReduce、データ倫理まで、データサイエンスに必要な幅広い知識をカバーします。