O'Reilly logo

Deep Reinforcement Learning Hands-On by Maxim Lapan

Stay ahead with the world's most comprehensive technology and business learning platform.

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, tutorials, and more.

Start Free Trial

No credit card required

Final glue – loss functions and optimizers

The network which transforms input data into output is not enough to start training it. We need to define our learning objective, which is to have a function that accepts two arguments: the network's output and the desired output. Its responsibility is to return to us a single number: how close the network's prediction is from the desired result. This function is called the loss function, and its output is the loss value. Using the loss value, we calculate gradients of network parameters and adjust them to decrease this loss value, which pushes our model to better results in the future. Both of those pieces—the loss function and the method of tweaking a network's parameters by gradients—are so common ...

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, interactive tutorials, and more.

Start Free Trial

No credit card required